
Package: rmutil (via r-universe)
September 7, 2024

Version 1.1.10

Title Utilities for Nonlinear Regression and Repeated Measurements
Models

Depends R (>= 1.4)

Description A toolkit of functions for nonlinear regression and
repeated measurements not to be used by itself but called by
other Lindsey packages such as 'gnlm', 'stable', 'growth',
'repeated', and 'event' (available at
<https://www.commanster.eu/rcode.html>).

License GPL (>=2)

URL https://www.commanster.eu/rcode.html

BugReports https://github.com/swihart/rmutil/issues

Encoding UTF-8

LazyData true

LazyLoad true

Repository https://swihart.r-universe.dev

RemoteUrl https://github.com/swihart/rmutil

RemoteRef HEAD

RemoteSha f803cff30682f8daf60e8ee36d4ce5906197cece

Contents
Beta Binomial . 3
Box-Cox . 4
Burr . 6
capply . 7
Consul . 7
contrast . 8
DataMethods . 9
dftorep . 13
Double Binomial . 16

1

https://www.commanster.eu/rcode.html
https://www.commanster.eu/rcode.html
https://github.com/swihart/rmutil/issues

2 Contents

DoublePoisson . 17
finterp . 18
fmobj . 23
fnenvir . 24
FormulaMethods . 26
Gamma Count . 28
gauss.hermite . 29
Generalized Extreme Value . 29
Generalized Gamma . 30
Generalized Inverse Gaussian . 31
Generalized Logistic . 33
Generalized Weibull . 34
gettvc . 35
Hjorth . 36
int . 37
int2 . 39
Inverse Gaussian . 40
iprofile . 41
Laplace . 42
Levy . 43
lin.diff.eqn . 44
lvna . 45
mexp . 47
mpower . 48
mprofile . 48
Multiplicative Binomial . 50
MultPoisson . 51
Pareto . 52
pkpd . 53
plot.residuals . 55
PowerExponential . 56
PvfPoisson . 57
read.list . 58
read.rep . 59
read.surv . 61
restovec . 62
rmna . 66
rmutil . 68
runge.kutta . 71
Simplex . 72
SkewLaplace . 73
tcctomat . 74
tvctomat . 76
Two-Sided Power . 77
wr . 79

Index 80

Beta Binomial 3

Beta Binomial Beta Binomial Distribution

Description

These functions provide information about the beta binomial distribution with parameters m and s:
density, cumulative distribution, quantiles, and random generation. Compared to the parameteriza-
tion of ‘VGAM::pbetabinom.ab‘, m = alpha/(alpha+beta) and s = (alpha+beta). See examples.

The beta binomial distribution with total = n and prob = m has density

p(y) =
B(y + σµ, n− y + σ ∗ (1− µ))

(
n
y

)
B(sm, s(1−m))

for y = 0, . . . , n where B() is the beta function.

Usage

dbetabinom(y, size, m, s, log=FALSE)
pbetabinom(q, size, m, s)
qbetabinom(p, size, m, s)
rbetabinom(n, size, m, s)

Arguments

y vector of frequencies

q vector of quantiles

p vector of probabilities

n number of values to generate

size vector of totals

m vector of probabilities of success; Compared to the parameterization of ‘VGAM::pbetabinom.ab‘,
m = alpha/(alpha+beta) where shape1=alpha and shape2=beta. See exam-
ples.

s vector of overdispersion parameters; Compared to the parameterization of ‘VGAM::pbetabinom.ab‘,
s = (alpha+beta) where shape1=alpha and shape2=beta. See examples.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dbinom for the binomial, ddoublebinom for the double binomial, and dmultbinom for the multi-
plicative binomial distribution.

4 Box-Cox

Examples

compute P(45 < y < 55) for y beta binomial(100,0.5,1.1)
sum(dbetabinom(46:54, 100, 0.5, 1.1))
pbetabinom(54,100,0.5,1.1)-pbetabinom(45,100,0.5,1.1)
pbetabinom(2,10,0.5,1.1)
qbetabinom(0.33,10,0.5,1.1)
rbetabinom(10,10,0.5,1.1)
compare to VGAM
Not run:
The beta binomial distribution with total = n and prob = m has density
#
p(y) = B(y+s m,n-y+s (1-m)) Choose(n,y) / B(s m,s (1-m))
#
for y = 0, . . . , n where B() is the beta function.

in `rmutil` from the .Rd file (excerpt above), the "alpha" is s*m
in `rmutil` from the .Rd file (excerpt above), the "beta" is s*(1-m)

in `VGAM`, rho is 1/(1+alpha+beta)

qq = 2.2
zz = 100

alpha = 1.1
beta = 2
VGAM::pbetabinom.ab(q=qq, size=zz, shape1=alpha, shape2=beta)

for VGAM `rho`
rr = 1/(1+alpha+beta)
VGAM::pbetabinom (q=qq, size=zz, prob=mm, rho = rr)

for rmutil `m` and `s`:
mm = alpha / (alpha+beta)
ss = (alpha+beta)
rmutil::pbetabinom(q=qq, size=zz, m=mm, s=ss)

End(Not run)

Box-Cox Box-Cox Distribution

Description

These functions provide information about the Box-Cox distribution with location parameter equal
to m, dispersion equal to s, and power transformation equal to f: density, cumulative distribution,
quantiles, log hazard, and random generation.

The Box-Cox distribution has density

f(y) =
1√
2πσ2

exp(−((yν/ν − µ)2/(2σ2)))/(1− I(ν < 0)− sign(ν) ∗ pnorm(0, µ, sqrt(σ)))

Box-Cox 5

where µ is the location parameter of the distribution, σ is the dispersion, ν is the family parameter,
I() is the indicator function, and y > 0.

ν = 1 gives a truncated normal distribution.

Usage

dboxcox(y, m, s=1, f=1, log=FALSE)
pboxcox(q, m, s=1, f=1)
qboxcox(p, m, s=1, f=1)
rboxcox(n, m, s=1, f=1)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

f vector of power parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dnorm for the normal or Gaussian distribution.

Examples

dboxcox(2, 5, 5, 2)
pboxcox(2, 5, 5, 2)
qboxcox(0.1, 5, 5, 2)
rboxcox(10, 5, 5, 2)

6 Burr

Burr Burr Distribution

Description

These functions provide information about the Burr distribution with location parameter equal to m,
dispersion equal to s, and family parameter equal to f: density, cumulative distribution, quantiles,
log hazard, and random generation.

The Burr distribution has density

f(y) =
νσ(y/µ)σ−1

µ(1 + (y/µ)σ)ν+1

where µ is the location parameter of the distribution, σ is the dispersion, and ν is the family param-
eter.

Usage

dburr(y, m, s, f, log=FALSE)
pburr(q, m, s, f)
qburr(p, m, s, f)
rburr(n, m, s, f)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

f vector of family parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

Examples

dburr(2, 5, 1, 2)
pburr(2, 5, 1, 2)
qburr(0.3, 5, 1, 2)
rburr(10, 5, 1, 2)

capply 7

capply A Fast Simplified Version of tapply

Description

a fast simplified version of tapply

Usage

capply(x, index, fcn=sum)

Arguments

x x

index index

fcn default sum

Details

a fast simplified version of tapply

Value

Returns ans where for(i in split(x,index))ans <- c(ans,fcn(i)).

Consul Consul Distribution

Description

These functions provide information about the Consul distribution with parameters m and s: density,
cumulative distribution, quantiles, and random generation.

The Consul distribution with mu = m has density

p(y) = µ exp(−(µ+ y(λ− 1))/λ)(µ+ y(λ− 1))(y − 1)/(λyy!)

for y = 0,

Usage

dconsul(y, m, s, log=FALSE)
pconsul(q, m, s)
qconsul(p, m, s)
rconsul(n, m, s)

8 contrast

Arguments

y vector of counts

q vector of quantiles

p vector of probabilities

n number of values to generate

m vector of means

s vector of overdispersion parameters

log if TRUE, log probabilities are supplied.

See Also

dpois for the Poisson, ddoublepois for the double Poisson, dmultpois for the multiplicative Pois-
son, and dpvfpois for the power variance function Poisson.

Examples

dconsul(5,10,0.9)
pconsul(5,10,0.9)
qconsul(0.08,10,0.9)
rconsul(10,10,0.9)

contrast Contrast Matrix for Constraints about the Mean

Description

Return a matrix of contrasts for constraints about the mean.

Usage

contr.mean(n, contrasts = TRUE)

Arguments

n A vector of levels for a factor or the number of levels.

contrasts A logical value indicating whether or not contrasts should be computed.

Details

This function corrects contr.sum to display labels properly.

Value

A matrix of computed contrasts with n rows and k columns, with k=n-1 if contrasts is TRUE and
k=n if contrasts is FALSE. The columns of the resulting matrices contain contrasts which can be
used for coding a factor with n levels.

DataMethods 9

See Also

contrasts, C, and contr.sum.

Examples

oldop <- options(contrasts=c("contr.sum","contra.poly"))
y <- rnorm(30)
x <- gl(3,10,labels=c("First","Second","Third"))
glm(y~x)
options(contrasts=c("contr.mean","contra.poly"))
x <- gl(3,10,labels=c("First","Second","Third"))
glm(y~x)
options(oldop)

DataMethods Methods for response, tccov, tvcov, and repeated Data Objects

Description

Objects of class, response, contain response values, and possibly the corresponding times, bino-
mial totals, nesting categories, censor indicators, and/or units of precision/Jacobian. Objects of
class, tccov, contain time-constant or inter-individual, baseline covariates. Objects of class, tvcov,
contain time-varying or intra-individual covariates. Objects of class, repeated, contain a response
object and possibly tccov and tvcov objects.

In formula and functions, the key words, times can be used to refer to the response times from
the data object as a covariate, individuals to the index for individuals as a factor covariate, and
nesting the index for nesting as a factor covariate. The latter two only work for W&R notation.

The following methods are available for accessing the contents of such data objects.

as.data.frame: places all of the variables in the data object in one dataframe, extending time-
constant covariates to the length of the others unless the object has class, tccov. Binomial and
censored response variables have two columns, respectively ‘yes’ and ‘no’ and response and cen-
soring indicator, with the name given to the response.

as.matrix: places all of the variables in the data object in one matrix, extending time-constant
covariates to the length of the others unless the object has class, tccov. If any covariates are factor
variables (instead of the corresponding sets of indicator variables), the matrix will be character
instead of numeric.

covariates: extracts covariate matrices from a data object (for formulae and functions, possibly
for selected individuals. See covariates.formulafn).

covind: gives the indexing of the response by individual (that is, the nesting indicator for obser-
vations within individuals). It can be used to expand time-constant covariates to the size of the
repeated measurements response.

delta: extracts the units of measurement vector and Jacobian of any transformation of the response,
possibly for selected individuals. Note that, if the unit of measurement/Jacobian is available in the
response object, this is automatically included in the calculation of the likelihood function in all
library model functions.

10 DataMethods

units: prints the variable names and their description and returns the latter.

formula: gives the formula used to create the time-constant covariate matrix of a data object (for
formulae and functions, see formula.formulafn).

names: extracts the names of the response and/or covariates.

nesting: gives the coding variable(s) for individuals (same as covind) and also for nesting within
individuals if available, possibly for selected individuals.

nobs: gives the number of observations per individual.

plot: plots the variables in the data object in various ways. For repeated objects, name can be a
response or a time-varying covariate.

print: prints summary information about the variables in a data object.

response: extracts the response vector, possibly for selected individuals. If there are censored
observations, this is a two-column matrix, with the censor indicator in the second column. For
binomial data, it is a two-column matrix with "positive" (y) and "negative" (totals-y) frequencies.

resptype: extracts the type of each response.

times: extracts the times vector, possibly for selected individuals.

transform: transforms variables. For example, transform(z, y=fcn1(y), times=fcn2(times))
where fcn1 and fcn2 are transformation functions. When the response is transformed, the Jacobian
is automatically calculated. New response variables and covariates can be created in this way, if
the left hand side is a new name (ynew=fcn3(y)), as well as replacing an old variable with the
transformed one. If the transformation reverses the order of the responses, use its negative to keep
the ordering and have a positive Jacobian; for example, ry=-1/y. For repeated objects, only the
response and the times can be transformed.

units: prints the variable names and their units of measurement and returns the latter.

weights: extracts the weight vector, possibly for selected individuals.

Usage

as.data.frame(x, ...)
as.matrix(x, ...)
covariates(z, ...)
covind(z, ...)
delta(z, ...)
S3 method for class 'tccov'
formula(x, ...)
S3 method for class 'repeated'
formula(x, ...)
S3 method for class 'tccov'
names(x, ...)
S3 method for class 'repeated'
names(x, ...)
nesting(z, ...)
nobs(z, ...)
S3 method for class 'response'
plot(x, name=NULL, nind=NULL, nest=1, ccov=NULL, add=FALSE, lty=NULL, pch=NULL,
main=NULL, ylim=NULL, xlim=NULL, xlab=NULL, ylab=NULL, ...)

DataMethods 11

S3 method for class 'repeated'
plot(x, name=NULL, nind=NULL, nest=1, ccov=NULL, add=FALSE, lty=NULL, pch=NULL,
main=NULL, ylim=NULL, xlim=NULL, xlab=NULL, ylab=NULL, ...)

S3 method for class 'tccov'
print(x, ...)
S3 method for class 'repeated'
print(x, nindmax=50, ...)
response(z, ...)
resptype(z, ...)
times(z, ...)
S3 method for class 'response'
transform(`_data`, times=NULL, units=NULL, ...)
S3 method for class 'repeated'
transform(`_data`, times=NULL, ...)
units(x, ...)
S3 method for class 'gnlm'
weights(object, ...)
S3 method for class 'repeated'
weights(object, nind=NULL, ...)
S3 method for class 'response'
weights(object, nind=NULL, ...)

Arguments

x, z A response, tccov, tvcov, or repeated data object. For covind and nobs,
this may also be a model.

times The function, when the times are to be transformed.
names The names of the response variable(s) or covariate(s).
nind The numbers of individuals to be used. (For plotting, cannot be used simultane-

ously with ccov.)
ccov For plotting: If a vector of values for the time-constant covariates is supplied,

only individuals having that set of values will have profiles plotted. These values
must be in the order in which the covariates appear when the data object is
printed. For factor variables, the codes must be given. If the name of a covariate
is supplied, a set of graphs is plotted, one for each covariate value, showing
profiles of all individuals having that value. (The covariate can have a maximum
of six values.) Cannot be used simultaneously with nind.

nest For plotting: nesting category to plot.
add For plotting: add to previous plot.
nindmax For printing a response, tvcov, or repeated object, if the number of individu-

als is greater than nindmax, the range of numbers of observations per individual
is printed instead of the vector of numbers.

name, lty, pch, main, ylim, xlim, xlab, ylab
See base plot.

_data, units, object
TBD.

... Arguments to other methods

12 DataMethods

Value

These methods extract information stored in response, tccov, tvcov, and repeated data objects
created respectively by restovec, tcctomat, tvctomat, and rmna.

Note that if a vector of binomial totals or a censoring indicator is present, this is extract as the
second column of the matrix produced by the response method.

Author(s)

J.K. Lindsey

See Also

restovec, rmna, tcctomat, tvctomat.

Examples

set up some data and create the objects
#
y <- matrix(rnorm(20),ncol=5)
tt <- c(1,3,6,10,15)
print(resp <- restovec(y, times=tt, units="m", type="duration"))
x <- c(0,0,1,1)
x2 <- as.factor(c("a","b","a","b"))
tcc <- tcctomat(data.frame(x=x,x2=x2))
z <- matrix(rpois(20,5),ncol=5)
tvc <- tvctomat(z)
print(reps <- rmna(resp, tvcov=tvc, ccov=tcc))
#
plot(resp)
plot(reps)
plot(reps, nind=1:2)
plot(reps, ccov=c(0,1))
plot(reps, ccov="x2")
plot(reps, name="z", nind=3:4, pch=1:2)
plot(reps, name="z", ccov="x2")
#
response(resp)
response(transform(resp, y=1/y))
response(reps)
response(reps, nind=2:3)
response(transform(reps,y=1/y))
#
times(resp)
times(transform(resp,times=times-6))
times(reps)
#
delta(resp)
delta(reps)
delta(transform(reps,y=1/y))
delta(transform(reps,y=1/y), nind=3)
#

dftorep 13

nobs(resp)
nobs(tvc)
nobs(reps)
#
units(resp)
units(reps)
#
resptype(resp)
resptype(reps)
#
weights(resp)
weights(reps)
#
covariates(tcc)
covariates(tcc, nind=2:3)
covariates(tvc)
covariates(tvc, nind=3)
covariates(reps)
covariates(reps, nind=3)
covariates(reps,names="x")
covariates(reps,names="z")
#
names(tcc)
names(tvc)
names(reps)
#
nesting(resp)
nesting(reps)
#
because individuals are the only nesting, this is the same as
covind(resp)
covind(reps)
#
as.data.frame(resp)
as.data.frame(tcc)
as.data.frame(tvc)
as.data.frame(reps)
#
use in glm
rm(y,x,z)
glm(y~x+z, data=as.data.frame(reps))

dftorep Transform a Dataframe to a repeated Object

Description

dftorep forms an object of class, repeated, from a dataframe with the option of removing any ob-
servations where response and covariate values have NAs. For repeated measurements, observations

14 dftorep

on the same individual must be together in the table. A number of validity checks are performed on
the data.

Such objects can be printed and plotted. Methods are available for extracting the response, the
numbers of observations per individual, the times, the weights, the units of measurement/Jacobian,
the nesting variable, the covariates, and their names: response, nobs, times, weights, delta,
nesting, covariates, and names.

Usage

dftorep(dataframe, response, id=NULL, times=NULL, censor=NULL,
totals=NULL, weights=NULL, nest=NULL, delta=NULL,
coordinates=NULL, type=NULL, ccov=NULL, tvcov=NULL, na.rm=TRUE)

Arguments

dataframe A dataframe.

response A character vector giving the column name(s) of the dataframe for the response
variable(s).

id A character vector giving the column name of the dataframe for the identifica-
tion numbers of the individuals. If the numbers are not consecutive integers, a
warning is given.
If NULL, one observation per individual is assumed if times is also NULL,
other time series is assumed.

times An optional character vector giving the column name of the dataframe for the
times vector.

censor An optional character vector giving the column name(s) of the dataframe for
the censor indicator(s). This must be the same length as response. Responses
without censor indicator can have a column either of all NAs or all 1s.

totals An optional character vector giving the column name(s) of the dataframe for the
totals for binomial data. This must be the same length as response. Responses
without censor indicator can have a column all NAs.

weights An optional character vector giving the column name of the dataframe for the
weights vector.

nest An optional character vector giving the column name of the dataframe for the
nesting vector within individuals.
This is the second level of nesting for repeated measurements, with the individ-
ual being the first level. Values for an individual must be consecutive increasing
integers.

delta An optional character vector giving the column name(s) of the dataframe for the
units of measurement/Jacobian(s) of the response(s). This must be the same
length as response. Responses without units of measurement/Jacobian can
have a column all NAs.
If all response variables have the same unit of measurement, this can be that one
number. If each response variable has the same unit of measurement for all its
values, this can be a numeric vector of length the number of response variables.

dftorep 15

coordinates An optional character vector giving the two or three column name(s) of the
dataframe for the spatial coordinates.

type An optional character vector giving the types of response variables: nominal,
ordinal, discrete, duration, continuous, multivariate, or unknown.

ccov An optional character vector giving the column names of the dataframe for the
time-constant or inter-individual covariates. For repeated measurements, if the
value is not constant for all observations on an individual, an error is produced.

tvcov An optional character vector giving the column names of the dataframe for the
time-varying or intra-individual covariates.

na.rm If TRUE, observations with NAs in any variables selected are removed in the
object returned. Otherwise, the corresponding indicator variable is returned in a
slot in the object.

Value

Returns an object of class, repeated, containing a list of the response object (z$response, so that,
for example, the response vector is z$response$y; see restovec), and possibly the two classes of
covariate objects (z$ccov and z$tvcov; see tcctomat and tvctomat).

Author(s)

J.K. Lindsey

See Also

lvna, read.list, read.rep, restovec, rmna, tcctomat, tvctomat

Examples

y <- data.frame(y1=rpois(20,5),y2=rpois(20,5))
y[2,2] <- NA
idd <- c(rep(1,5),rep(2,10),rep(3,5))
tt <- c(1:5,1:10,1:5)
totals <- data.frame(tot1=rep(12,20),tot2=rep(12,20))
x2 <- c(rep(1,5),rep(2,10),rep(3,5))
df <- data.frame(y,id=idd,tt=tt,totals,x1=rnorm(20),x2=x2)
df
dftorep(df,resp=c("y1","y2"),times="tt",id="id",totals=c("tot1","tot2"),
tvcov="x1",ccov="x2")

dftorep(df,resp=c("y1","y2"),times="tt",id="id",totals=c("tot1","tot2"),
tvcov="x1",ccov="x2",na.rm=FALSE)

x1 is not a time-constant covariate
#dftorep(df,resp=c("y1","y2"),times="tt",id="id",ccov="x1",na.rm=FALSE)

16 Double Binomial

Double Binomial Double Binomial Distribution

Description

These functions provide information about the double binomial distribution with parameters m and
s: density, cumulative distribution, quantiles, and random generation.

The double binomial distribution with total = n and prob = m has density

p(y) = c(n,m, s)

(
n

y

)
nns(m/y)(ys)((1−m)/(n− y))

(
(n− y)sy)yy(n− y)

(n−y)
)

for y = 0, . . . , n, where c(.) is a normalizing constant.

Usage

ddoublebinom(y, size, m, s, log=FALSE)
pdoublebinom(q, size, m, s)
qdoublebinom(p, size, m, s)
rdoublebinom(n, size, m, s)

Arguments

y vector of frequencies

q vector of quantiles

p vector of probabilities

n number of values to generate

size vector of totals

m vector of probabilities of success

s vector of overdispersion parameters

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dbinom for the binomial, dmultbinom for the multiplicative binomial, and dbetabinom for the beta
binomial distribution.

DoublePoisson 17

Examples

compute P(45 < y < 55) for y double binomial(100,0.5,1.1)
sum(ddoublebinom(46:54, 100, 0.5, 1.1))
pdoublebinom(54, 100, 0.5, 1.1)-pdoublebinom(45, 100, 0.5, 1.1)
pdoublebinom(2,10,0.5,1.1)
qdoublebinom(0.05,10,0.5,1.1)
rdoublebinom(10,10,0.5,1.1)

DoublePoisson Double Poisson Distribution

Description

These functions provide information about the double Poisson distribution with parameters m and
s: density, cumulative distribution, quantiles, and random generation.

The double Poisson distribution with mu = m has density

p(y) = c(µ, λ)λ(y/µ)(µ/y)(y log(λ))y(y−1)/y!

for y = 0, . . ., where c(.) is a normalizing constant.

Usage

ddoublepois(y, m, s, log=FALSE)
pdoublepois(q, m, s)
qdoublepois(p, m, s)
rdoublepois(n, m, s)

Arguments

y vector of counts

q vector of quantiles

p vector of probabilities

n number of values to generate

m vector of means

s vector of overdispersion parameters

log if TRUE, log probabilities are supplied.

See Also

dpois for the Poisson, dconsul for the Consul generalized Poisson, dgammacount for the gamma
count, dmultpois for the multiplicative Poisson, dpvfpois for the power variance function Poisson,
and dnbinom for the negative binomial distribution.

18 finterp

Examples

ddoublepois(5,10,0.9)
pdoublepois(5,10,0.9)
qdoublepois(0.08,10,0.9)
rdoublepois(10,10,0.9)

finterp Formula Interpreter

Description

finterp translates a model formula into a function of the unknown parameters or of a vector of
them. Such language formulae can either be in Wilkinson and Rogers notation or be expressions
containing both known (existing) covariates and unknown (not existing) parameters. In the latter,
factor variables cannot be used and parameters must be scalars.

The covariates in the formula are sought in the environment or in the data object provided. If the
data object has class, repeated or response, then the key words, times will use the response
times from the data object as a covariate, individuals will use the index for individuals as a factor
covariate, and nesting the index for nesting as a factor covariate. The latter two only work for
W&R notation.

Note that, in parameter displays, formulae in Wilkinson and Rogers notation use variable names
whereas those with unknowns use the names of these parameters, as given in the formulae, and that
the meaning of operators (*, /, :, etc.) is different in the two cases.

Usage

finterp(.z, ...)
Default S3 method:
finterp(.z, .envir=parent.frame(), .formula=FALSE, .vector=TRUE,
.args=NULL, .start=1, .name=NULL, .expand=TRUE, .intercept=TRUE,
.old=NULL, .response=FALSE, ...)

Arguments

.z A model formula beginning with ~, either in Wilkinson and Rogers notation or
containing unknown parameters. If it contains unknown parameters, it can have
several lines so that, for example, local variables can be assigned temporary
values. In this case, enclose the formula in curly brackets.

.envir The environment in which the formula is to be interpreted or a data object of
class, repeated, tccov, or tvcov.

.formula If TRUE and the formula is in Wilkinson and Rogers notation, just returns the
formula.

.vector If FALSE and the formula contains unknown parameters, the function returned
has them as separate arguments. If TRUE, it has one argument, the unknowns as
a vector, unless certain parameter names are specified in .args. Always TRUE
if .envir is a data object.

finterp 19

.args If .vector is TRUE, names of parameters that are to be function arguments and
not included in the vector.

.start The starting index value of the parameter vector in the function returned when
.vector is TRUE.

.name Character string giving the name of the data object specified by .envir. Ignored
unless the latter is such an object and only necessary when finterp is called
within other functions.

.expand If TRUE, expand functions with only time-constant covariates to return one
value per observation instead of one value per individual. Ignored unless .envir
is an object of class, repeated.

.intercept If W&R notation is supplied and .intercept=F, a model function without in-
tercept is returned.

.old The name of an existing object of class formulafn which has common pa-
rameters with the one being created, or a list of such objects. Only used if
.vector=TRUE. The value of .start should ensure that there is no conflict in
indexing the vector.

.response If TRUE, any response variable can be used in the function. If FALSE, checks
are made that the response is not also used as a covariate.

... Arguments passed to other functions.

Value

A function, of class formulafn, of the unknown parameters or of a vector of them is returned.
Its attributes give the formula supplied, the model function produced, the covariate names, the
parameter names, and the range of values of the index of the parameter vector. If formula is
TRUE and a Wilkinson and Rogers formula was supplied, it is simply returned instead of creating
a function.

Author(s)

J.K. Lindsey

See Also

FormulaMethods, covariates, fnenvir, formula, model, parameters

Examples

x1 <- rpois(20,2)
x2 <- rnorm(20)
#
Wilkinson and Rogers formula with three parameters
fn1 <- finterp(~x1+x2)
fn1
fn1(rep(2,3))
the same formula with unknowns
fn2 <- finterp(~b0+b1*x1+b2*x2)
fn2

20 finterp

fn2(rep(2,3))
#
nonlinear formulae with unknowns
log link
fn2a <- finterp(~exp(b0+b1*x1+b2*x2))
fn2a
fn2a(rep(0.2,3))
parameters common to two functions
fn2b <- finterp(~c0+c1*exp(b0+b1*x1+b2*x2), .old=fn2a, .start=4)
fn2b
function returned also depends on values of another function
fn2c <- finterp(~fn2+c1*exp(b0+b1*x1+b2*x2), .old=fn2a,
.start=4, .args="fn2")

fn2c
args(fn2c)
fn2c(rep(0.2,4),fn2(rep(2,3)))
#
compartment model
times <- 1:20
exp() parameters to ensure that they are positive
fn3 <- finterp(~exp(absorption-volume)/(exp(absorption)-
exp(elimination))*(exp(-exp(elimination)*times)-
exp(-exp(absorption)*times)))

fn3
fn3(log(c(0.3,3,0.2)))
a more efficient way
(note that parameters do not appear in the same order)
form <- ~{
ka <- exp(absorption)
ke <- exp(elimination)
ka*exp(-volume)/(ka-ke)*(exp(-ke*times)-exp(-ka*times))}

fn3a <- finterp(form)
fn3a(log(c(0.3,0.2,3)))
#
Poisson density
y <- rpois(20,5)
fn4 <- finterp(~mu^y*exp(-mu)/gamma(y+1))
fn4
fn4(5)
dpois(y,5)
#
Poisson likelihood
mean parameter
fn5 <- finterp(~-y*log(mu)+mu+lgamma(y+1),.vector=FALSE)
fn5
likefn1 <- function(p) sum(fn5(mu=p))
nlm(likefn1,p=1)
mean(y)
canonical parameter
fn5a <- finterp(~-y*theta+exp(theta)+lgamma(y+1),.vector=FALSE)
fn5a
likefn1a <- function(p) sum(fn5a(theta=p))
nlm(likefn1a,p=1)

finterp 21

#
likelihood for Poisson log linear regression
y <- rpois(20,fn2a(c(0.2,1,0.4)))
nlm(likefn1,p=1)
mean(y)
likefn2 <- function(p) sum(fn5(mu=fn2a(p)))
nlm(likefn2,p=c(1,0,0))
or
likefn2a <- function(p) sum(fn5a(theta=fn2(p)))
nlm(likefn2a,p=c(1,0,0))
#
likelihood for Poisson nonlinear regression
y <- rpois(20,fn3(log(c(3,0.3,0.2))))
nlm(likefn1,p=1)
mean(y)
likefn3 <- function(p) sum(fn5(mu=fn3(p)))
nlm(likefn3,p=log(c(1,0.4,0.1)))
#
envir as data objects
y <- matrix(rnorm(20),ncol=5)
y[3,3] <- y[2,2] <- NA
x1 <- 1:4
x2 <- c("a","b","c","d")
resp <- restovec(y)
xx <- tcctomat(x1)
xx2 <- tcctomat(data.frame(x1,x2))
z1 <- matrix(rnorm(20),ncol=5)
z2 <- matrix(rnorm(20),ncol=5)
z3 <- matrix(rnorm(20),ncol=5)
zz <- tvctomat(z1)
zz <- tvctomat(z2,old=zz)
reps <- rmna(resp, ccov=xx, tvcov=zz)
reps2 <- rmna(resp, ccov=xx2, tvcov=zz)
rm(y, x1, x2 , z1, z2)
#
repeated objects
#
time-constant covariates
Wilkinson and Rogers notation
form1 <- ~x1
print(fn1 <- finterp(form1, .envir=reps))
fn1(2:3)
print(fn1a <- finterp(form1, .envir=xx))
fn1a(2:3)
form1b <- ~x1+x2
print(fn1b <- finterp(form1b, .envir=reps2))
fn1b(2:6)
print(fn1c <- finterp(form1b, .envir=xx2))
fn1c(2:6)
with unknown parameters
form2 <- ~a+b*x1
print(fn2 <- finterp(form2, .envir=reps))
fn2(2:3)

22 finterp

print(fn2a <- finterp(form2, .envir=xx))
fn2a(2:3)
#
time-varying covariates
Wilkinson and Rogers notation
form3 <- ~z1+z2
print(fn3 <- finterp(form3, .envir=reps))
fn3(2:4)
print(fn3a <- finterp(form3, .envir=zz))
fn3a(2:4)
with unknown parameters
form4 <- ~a+b*z1+c*z2
print(fn4 <- finterp(form4, .envir=reps))
fn4(2:4)
print(fn4a <- finterp(form4, .envir=zz))
fn4a(2:4)
#
note: lengths of x1 and z2 differ
Wilkinson and Rogers notation
form5 <- ~x1+z2
print(fn5 <- finterp(form5, .envir=reps))
fn5(2:4)
with unknown parameters
form6 <- ~a+b*x1+c*z2
print(fn6 <- finterp(form6, .envir=reps))
fn6(2:4)
#
with times
Wilkinson and Rogers notation
form7 <- ~x1+z2+times
print(fn7 <- finterp(form7, .envir=reps))
fn7(2:5)
form7a <- ~x1+x2+z2+times
print(fn7a <- finterp(form7a, .envir=reps2))
fn7a(2:8)
with unknown parameters
form8 <- ~a+b*x1+c*z2+e*times
print(fn8 <- finterp(form8, .envir=reps))
fn8(2:5)
#
with a variable not in the data object
form9 <- ~a+b*z1+c*z2+e*z3
print(fn9 <- finterp(form9, .envir=reps))
fn9(2:5)
z3 assumed to be an unknown parameter:
fn9(2:6)
#
multiline formula
form10 <- ~{
tmp <- exp(b)
a+tmp*z1+c*z2+d*times}

print(fn10 <- finterp(form10, .envir=reps))
fn10(2:5)

fmobj 23

fmobj Object Finder

Description

fmobj inspects a formula and returns a list containing the objects referred to, with indicators as to
which are unknown parameters, covariates, factor variables, and functions.

Usage

fmobj(z, envir=parent.frame())

Arguments

z A model formula beginning with ~, either in Wilkinson and Rogers notation or
containing unknown parameters.

envir The environment in which the formula is to be interpreted.

Value

A list, of class fmobj, containing a character vector (objects) with the names of the objects used in
a formula, and logical vectors indicating which are unknown parameters (parameters), covariates
(covariates), factor variables (factors), and functions (functions).

Author(s)

J.K. Lindsey

See Also

finterp

Examples

x1 <- rpois(20,2)
x2 <- rnorm(20)
x3 <- gl(2,10)
#
W&R formula
fmobj(~x1+x2+x3)
#
formula with unknowns
fmobj(~b0+b1*x1+b2*x2)
#
nonlinear formulae with unknowns
log link
fmobj(~exp(b0+b1*x1+b2*x2))

24 fnenvir

fnenvir Check Covariates and Parameters of a Function

Description

fnenvir finds the covariates and parameters in a function and can modify it so that the covariates
used in it are found in the data object specified by .envir.

If the data object has class, repeated, the key word times in a function will use the response times
from the data object as a covariate.

Usage

fnenvir(.z, ...)
Default S3 method:
fnenvir(.z, .envir=parent.frame(), .name=NULL, .expand=TRUE,
.response=FALSE, ...)

Arguments

.z A function.

.envir The environment or data object of class, repeated, tccov, or tvcov, in which
the function is to be interpreted.

.name Character string giving the name of the data object specified by .envir. Ignored
unless the latter is such an object and only necessary when fnenvir is called
within other functions.

.expand If TRUE, expand functions with only time-constant covariates to return one
value per observation instead of one value per individual. Ignored unless .envir
is an object of class, repeated.

.response If TRUE, any response variable can be used in the function. If FALSE, checks
are made that the response is not also used as a covariate.

... Arguments passed to other functions.

Value

The (modified) function, of class formulafn, is returned with its attributes giving the (new) model
function, the covariate names, and the parameter names.

Author(s)

J.K. Lindsey

See Also

FormulaMethods,covariates, finterp, model, parameters

fnenvir 25

Examples

fn <- function(p) a+b*x
fnenvir(fn)
fn <- function(p) a+p*x
fnenvir(fn)
x <- 1:4
fnenvir(fn)
fn <- function(p) p[1]+exp(p[2]*x)
fnenvir(fn)
#
y <- matrix(rnorm(20),ncol=5)
y[3,3] <- y[2,2] <- NA
resp <- restovec(y)
xx <- tcctomat(x)
z1 <- matrix(rnorm(20),ncol=5)
z2 <- matrix(rnorm(20),ncol=5)
z3 <- matrix(rnorm(20),ncol=5)
zz <- tvctomat(z1)
zz <- tvctomat(z2,old=zz)
reps <- rmna(resp, ccov=xx, tvcov=zz)
rm(y, x, z1, z2)
#
repeated objects
func1 <- function(p) p[1]+p[2]*x+p[3]*z2
print(fn1 <- fnenvir(func1, .envir=reps))
fn1(2:4)
#
time-constant covariates
func2 <- function(p) p[1]+p[2]*x
print(fn2 <- fnenvir(func2, .envir=reps))
fn2(2:3)
print(fn2a <- fnenvir(func2, .envir=xx))
fn2a(2:3)
#
time-varying covariates
func3 <- function(p) p[1]+p[2]*z1+p[3]*z2
print(fn3 <- fnenvir(func3, .envir=reps))
fn3(2:4)
print(fn3a <- fnenvir(func3, .envir=zz))
fn3a(2:4)
including times
func3b <- function(p) p[1]+p[2]*z1+p[3]*z2+p[4]*times
print(fn3b <- fnenvir(func3b, .envir=reps))
fn3b(2:5)
#
with typing error and a variable not in the data object
func4 <- function(p) p[1]+p2[2]*z1+p[3]*z2+p[4]*z3
print(fn4 <- fnenvir(func4, .envir=reps))
#
first-order one-compartment model
data objects for formulae
dose <- c(2,5)

26 FormulaMethods

dd <- tcctomat(dose)
times <- matrix(rep(1:20,2), nrow=2, byrow=TRUE)
tt <- tvctomat(times)
vector covariates for functions
dose <- c(rep(2,20),rep(5,20))
times <- rep(1:20,2)
functions
mu <- function(p) {
absorption <- exp(p[1])
elimination <- exp(p[2])
absorption*exp(-p[3])*dose/(absorption-elimination)*
(exp(-elimination*times)-exp(-absorption*times))}

shape <- function(p) exp(p[1]-p[2])*times*dose*exp(-exp(p[1])*times)
response
conc <- matrix(rgamma(40,shape(log(c(0.1,0.4))),
scale=mu(log(c(1,0.3,0.2))))/shape(log(c(0.1,0.4))),ncol=20,byrow=TRUE)

conc[,2:20] <- conc[,2:20]+0.5*(conc[,1:19]-matrix(mu(log(c(1,0.3,0.2))),
ncol=20,byrow=TRUE)[,1:19])

conc <- restovec(ifelse(conc>0,conc,0.01))
reps <- rmna(conc, ccov=dd, tvcov=tt)
#
print(fn5 <- fnenvir(mu,.envir=reps))
fn5(c(0,-1.2,-1.6))

FormulaMethods Methods for formulafn Functions

Description

Methods for accessing the contents of a function created from formula produced by finterp or a
function modified by fnenvir.

covariates: extract the names of the covariates.

formula: extract the formula used to produce the function (finterp only).

model: extract the model function or model matrix if W&R notation was used.

parameters: extract the names of the parameters.

Usage

S3 method for class 'formulafn'
covariates(z, ...)
S3 method for class 'formulafn'
formula(x, ...)
model(z, ...)
parameters(z, ...)
S3 method for class 'formulafn'
print(x, ...)

FormulaMethods 27

Arguments

x, z A function of class, formulafn.

... Arguments to other functions.

Value

These methods extract information about functions of class, formulafn, created by finterp or
fnenvir.

Author(s)

J.K. Lindsey

See Also

finterp, fnenvir.

Examples

x1 <- rpois(20,2)
x2 <- rnorm(20)
#
Wilkinson and Rogers formula with three parameters
fn1 <- finterp(~x1+x2)
fn1
covariates(fn1)
formula(fn1)
model(fn1)
parameters(fn1)
#
nonlinear formula with unknowns
fn2 <- finterp(~exp(b0+b1*x1+b2*x2))
fn2
covariates(fn2)
formula(fn2)
model(fn2)
parameters(fn2)
#
function transformed by fnenvir
fn3 <- fnenvir(function(p) p[1]+p[2]*x1)
covariates(fn3)
formula(fn3)
model(fn3)
parameters(fn3)

28 Gamma Count

Gamma Count Gamma Count Distribution

Description

These functions provide information about the gamma count distribution with parameters m and s:
density, cumulative distribution, quantiles, and random generation.

The gamma count distribution with prob = m has density

p(y) = pgamma(µσ, yσ, 1)− pgamma(µσ, (y + 1)σ, 1)

for y = 0, . . . , n where pgamma(µσ, 0, 1) = 1.

Usage

dgammacount(y, m, s, log=FALSE)
pgammacount(q, m, s)
qgammacount(p, m, s)
rgammacount(n, m, s)

Arguments

y vector of frequencies

q vector of quantiles

p vector of probabilities

n number of values to generate

m vector of probabilities

s vector of overdispersion parameters

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dpois for the Poisson, dconsul for the Consul generalized Poisson, ddoublepois for the dou-
ble Poisson, dmultpois for the multiplicative Poisson distributions, and dnbinom for the negative
binomial distribution.

Examples

dgammacount(5,10,0.9)
pgammacount(5,10,0.9)
qgammacount(0.08,10,0.9)
rgammacount(10,10,0.9)

gauss.hermite 29

gauss.hermite Calculate Gauss-Hermite Quadrature Points

Description

gauss.hermite calculates the Gauss-Hermite quadrature values for a specified number of points.

Usage

gauss.hermite(points, iterlim=10)

Arguments

points The number of points.

iterlim Maximum number of iterations in Newton-Raphson.

Value

gauss.hermite returns a two-column matrix containing the points and their corresponding weights.

Author(s)

J.K. Lindsey

Examples

gauss.hermite(10)

Generalized Extreme Value

Generalized Extreme Value Distribution

Description

These functions provide information about the generalized extreme value distribution with location
parameter equal to m, dispersion equal to s, and family parameter equal to f: density, cumulative
distribution, quantiles, log hazard, and random generation.

The generalized extreme value distribution has density

f(y) = yν−1 exp(yν/ν)
σ

µ

exp(yν/ν)

µσ−1/(1− I(ν > 0) + sign(ν)exp(−µ−σ))
exp(−(exp(yνν)/µ)σ)

where µ is the location parameter of the distribution, σ is the dispersion, ν is the family parameter,
I() is the indicator function, and y > 0.

ν = 1 a truncated extreme value distribution.

30 Generalized Gamma

Usage

dgextval(y, s, m, f, log=FALSE)
pgextval(q, s, m, f)
qgextval(p, s, m, f)
rgextval(n, s, m, f)

Arguments

y vector of responses.
q vector of quantiles.
p vector of probabilities
n number of values to generate
m vector of location parameters.
s vector of dispersion parameters.
f vector of family parameters.
log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dweibull for the Weibull distribution.

Examples

dgextval(1, 2, 1, 2)
pgextval(1, 2, 1, 2)
qgextval(0.82, 2, 1, 2)
rgextval(10, 2, 1, 2)

Generalized Gamma Generalized Gamma Distribution

Description

These functions provide information about the generalized gamma distribution with scale parameter
equal to m, shape equal to s, and family parameter equal to f: density, cumulative distribution,
quantiles, log hazard, and random generation.

The generalized gamma distribution has density

f(y) =
νyν−1

(µ/σ)νσGamma(σ)
yν(σ−1) exp(−(yσ/µ)ν)

where µ is the scale parameter of the distribution, σ is the shape, and ν is the family parameter.

ν = 1 yields a gamma distribution, σ = 1 a Weibull distribution, and σ = ∞ a log normal
distribution.

Generalized Inverse Gaussian 31

Usage

dggamma(y, s, m, f, log=FALSE)
pggamma(q, s, m, f)
qggamma(p, s, m, f)
rggamma(n, s, m, f)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

f vector of family parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dgamma for the gamma distribution, dweibull for the Weibull distribution, dlnorm for the log nor-
mal distribution.

Examples

dggamma(2, 5, 4, 2)
pggamma(2, 5, 4, 2)
qggamma(0.75, 5, 4, 2)
rggamma(10, 5, 4, 2)

Generalized Inverse Gaussian

Generalized Inverse Gaussian Distribution

Description

These functions provide information about the generalized inverse Gaussian distribution with mean
equal to m, dispersion equal to s, and family parameter equal to f: density, cumulative distribution,
quantiles, log hazard, and random generation.

The generalized inverse Gaussian distribution has density

f(y) =
yν−1

2µνK(1/(σµ), abs(ν))
exp(−(1/y + y/µ2)/(2 ∗ σ))

32 Generalized Inverse Gaussian

where µ is the mean of the distribution, σ the dispersion, ν is the family parameter, and K() is the
fractional Bessel function of the third kind.

ν = −1/2 yields an inverse Gaussian distribution, σ = ∞, ν > 0 a gamma distribution, and ν = 0
a hyperbola distribution.

Usage

dginvgauss(y, m, s, f, log=FALSE)
pginvgauss(q, m, s, f)
qginvgauss(p, m, s, f)
rginvgauss(n, m, s, f)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of means.

s vector of dispersion parameters.

f vector of family parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dinvgauss for the inverse Gaussian distribution.

Examples

dginvgauss(10, 3, 1, 1)
pginvgauss(10, 3, 1, 1)
qginvgauss(0.4, 3, 1, 1)
rginvgauss(10, 3, 1, 1)

Generalized Logistic 33

Generalized Logistic Generalized Logistic Distribution

Description

These functions provide information about the generalized logistic distribution with location pa-
rameter equal to m, dispersion equal to s, and family parameter equal to f: density, cumulative
distribution, quantiles, log hazard, and random generation.

The generalized logistic distribution has density

f(y) =
ν
√
3 exp(−

√
3(y − µ)/(σπ))

σπ(1 + exp(−
√
3(y − µ)/(σπ)))ν+1

where µ is the location parameter of the distribution, σ is the dispersion, and ν is the family param-
eter.

ν = 1 gives a logistic distribution.

Usage

dglogis(y, m=0, s=1, f=1, log=FALSE)
pglogis(q, m=0, s=1, f=1)
qglogis(p, m=0, s=1, f=1)
rglogis(n, m=0, s=1, f=1)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

f vector of family parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dlogis for the logistic distribution.

34 Generalized Weibull

Examples

dglogis(5, 5, 1, 2)
pglogis(5, 5, 1, 2)
qglogis(0.25, 5, 1, 2)
rglogis(10, 5, 1, 2)

Generalized Weibull Generalized Weibull Distribution

Description

These functions provide information about the generalized Weibull distribution, also called the
exponentiated Weibull, with scale parameter equal to m, shape equal to s, and family parameter
equal to f: density, cumulative distribution, quantiles, log hazard, and random generation.

The generalized Weibull distribution has density

f(y) =
σνyσ−1(1− exp(−(y/µ)σ))ν−1 exp(−(y/µ)σ)

µσ

where µ is the scale parameter of the distribution, σ is the shape, and ν is the family parameter.

ν = 1 gives a Weibull distribution, for σ = 1, ν < 0 a generalized F distribution, and for σ > 0,
ν ≤ 0 a Burr type XII distribution.

Usage

dgweibull(y, s, m, f, log=FALSE)
pgweibull(q, s, m, f)
qgweibull(p, s, m, f)
rgweibull(n, s, m, f)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

f vector of family parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

gettvc 35

See Also

dweibull for the Weibull distribution, df for the F distribution, dburr for the Burr distribution.

Examples

dgweibull(5, 1, 3, 2)
pgweibull(5, 1, 3, 2)
qgweibull(0.65, 1, 3, 2)
rgweibull(10, 1, 3, 2)

gettvc Find the Most Recent Value of a Time-varying Covariate Before Each
Observed Response

Description

gettvc finds the most recent value of a time-varying covariate before each observed response and
possibly adds them to a list of other time-varying covariates. It compares the times of response
observations with those of time-varying covariates to find the most recent observed time-varying
covariate for each response. These are either placed in a new object of class, tvcov, added to an
already existing list of matrices containing other time-varying covariates and a new object of class,
tvcov, created, or added to an existing object of class, tvcov.

If there are response observation times before the first covariate time, the covariate for these times
is set to zero.

Usage

gettvc(response, times=NULL, tvcov=NULL, tvctimes=NULL,
oldtvcov=NULL, ties=TRUE)

Arguments

response A list of two column matrices with response values and times for each individ-
ual, one matrix or dataframe of response values, or an object of class, response
(created by restovec).

times When response is a matrix, a vector of possibly unequally spaced times for the
response, when they are the same for all individuals or a matrix of times. Not
necessary if equally spaced.

tvcov A list of two column matrices with time-varying covariate values and corre-
sponding times for each individual or one matrix or dataframe of such covariate
values. Times need not be the same as for responses.

tvctimes When the time-varying covariate is a matrix, a vector of possibly unequally
spaced times for the covariate, when they are the same for all individuals or a
matrix of times. Not necessary if equally spaced.

36 Hjorth

oldtvcov A list of matrices with time-varying covariate values, observed at the event times
in response, for each individual, or an object of class, tvcov. If not provided,
a new object is created.

ties If TRUE, when the response and covariate times are identical, the response de-
pends on that new value (as in observational studies); if FALSE, only the next
response depends on that value (for example, if the covariate is a new treatment
just applied at that time).

Value

An object of class, tvcov, is returned containing the new time-varying covariate and, possibly, those
in oldtvcov.

Author(s)

J.K. Lindsey and D.F. Heitjan

See Also

read.list, restovec, tvctomat.

Examples

Not run:
y <- matrix(rnorm(20), ncol=5)
resp <- restovec(y, times=c(1,3,6,10,15))
z <- matrix(rpois(20,5),ncol=5)
z
create a new time-varying covariate object for the response
newtvc <- gettvc(resp, tvcov=z, tvctimes=c(1,2,5,12,14))
covariates(newtvc)
add another time-varying covariate to the object
z2 <- matrix(rpois(20,5),ncol=5)
z2
newtvc2 <- gettvc(resp, tvcov=z2, tvctimes=c(0,4,5,12,16), oldtvc=newtvc)
covariates(newtvc2)

End(Not run)

Hjorth Hjorth Distribution

Description

These functions provide information about the Hjorth distribution with location parameter equal to
m, dispersion equal to s, and family parameter equal to f: density, cumulative distribution, quantiles,
log hazard, and random generation.

int 37

The Hjorth distribution has density

f(y) = (1 + σy)−ν/σ exp(−(y/µ)2/2)(
y

µ2
+

ν

1 + σy
)

where µ is the location parameter of the distribution, σ is the dispersion, and ν is the family param-
eter.

Usage

dhjorth(y, m, s, f, log=FALSE)
phjorth(q, m, s, f)
qhjorth(p, m, s, f)
rhjorth(n, m, s, f)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

f vector of family parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

Examples

dhjorth(5, 5, 5, 2)
phjorth(5, 5, 5, 2)
qhjorth(0.8, 5, 5, 2)
rhjorth(10, 5, 5, 2)

int Vectorized Numerical Integration

Description

int performs numerical integration of a given function using either Romberg integration or algo-
rithm 614 of the collected algorithms from ACM. Only the former is vectorized. The latter uses
formulae optimal in certain Hardy spaces h(p,d).

Functions may have singularities at one or both end-points of the interval (a,b).

38 int

Usage

int(f, a=-Inf, b=Inf, type="Romberg", eps=0.0001, max=NULL, d=NULL, p=0)

Arguments

f The function (of one variable) to integrate, returning either a scalar or a vector.

a A scalar or vector (only Romberg) giving the lower bound(s). A vector cannot
contain both -Inf and finite values.

b A scalar or vector (only Romberg) giving the upper bound(s). A vector cannot
contain both Inf and finite values.

type The algorithm to be used, by default Romberg integration. Otherwise, it uses
the TOMS614 algorithm.

eps Precision.

max For Romberg, the maximum number of steps, by default set to 16. For TOMS614,
the maximum number of function evaluations, by default set to 100.

d For Romberg, the number of extrapolation points so that 2d is the order of in-
tegration, by default set to 5; d=2 is Simpson’s rule. For TOMS614, heuristic
termination = any real number; deterministic termination = a number in the
range 0 < d < pi/2 by default, set to 1.

p For TOMS614, p = 0: heuristic termination, p = 1: deterministic termination
with the infinity norm, p > 1: deterministic termination with the p-th norm.

Value

The vector of values of the integrals of the function supplied.

Author(s)

J.K. Lindsey

References

ACM algorithm 614 appeared in

ACM-Trans. Math. Software, Vol.10, No. 2, Jun., 1984, p. 152-160.

See also

Sikorski,K., Optimal quadrature algorithms in HP spaces, Num. Math., 39, 405-410 (1982).

Examples

f <- function(x) sin(x)+cos(x)-x^2
int(f, a=0, b=2)
int(f, a=0, b=2, type="TOMS614")
#
f <- function(x) exp(-(x-2)^2/2)/sqrt(2*pi)
int(f, a=0:3)
int(f, a=0:3, d=2)
1-pnorm(0:3, 2)

int2 39

#
f <- function(x) dnorm(x)
int(f, a=-Inf, b=qnorm(0.975))
int(f, a=-Inf, b=qnorm(0.975), type="TOMS614", max=1e2)

int2 Vectorized Two-dimensional Numerical Integration

Description

int performs vectorized numerical integration of a given two-dimensional function.

Usage

int2(f, a=c(-Inf,-Inf), b=c(Inf,Inf), eps=1.0e-6, max=16, d=5)

Arguments

f The function (of two variables) to integrate, returning either a scalar or a vector.

a A two-element vector or a two-column matrix giving the lower bounds. It cannot
contain both -Inf and finite values.

b A two-element vector or a two-column matrix giving the upper bounds. It cannot
contain both Inf and finite values.

eps Precision.

max The maximum number of steps, by default set to 16.

d The number of extrapolation points so that 2k is the order of integration, by
default set to 5; d=2 is Simpson’s rule.

Value

The vector of values of the integrals of the function supplied.

Author(s)

J.K. Lindsey

Examples

f <- function(x,y) sin(x)+cos(y)-x^2
int2(f, a=c(0,1), b=c(2,4))
#
fn1 <- function(x, y) x^2+y^2
fn2 <- function(x, y) (1:4)*x^2+(2:5)*y^2
int2(fn1, c(1,2), c(2,4))
int2(fn2, c(1,2), c(2,4))
int2(fn1, matrix(c(1:4,1:4),ncol=2), matrix(c(2:5,2:5),ncol=2))
int2(fn2, matrix(c(1:4,1:4),ncol=2), matrix(c(2:5,2:5),ncol=2))

40 Inverse Gaussian

Inverse Gaussian Inverse Gaussian Distribution

Description

These functions provide information about the inverse Gaussian distribution with mean equal to
m and dispersion equal to s: density, cumulative distribution, quantiles, log hazard, and random
generation.

The inverse Gaussian distribution has density

f(y) =
1√

2πσy3
e−(y−µ)2/(2yσm2)

where µ is the mean of the distribution and σ is the dispersion.

Usage

dinvgauss(y, m, s, log=FALSE)
pinvgauss(q, m, s)
qinvgauss(p, m, s)
rinvgauss(n, m, s)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of means.

s vector of dispersion parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dnorm for the normal distribution and dlnorm for the Lognormal distribution.

Examples

dinvgauss(5, 5, 1)
pinvgauss(5, 5, 1)
qinvgauss(0.8, 5, 1)
rinvgauss(10, 5, 1)

iprofile 41

iprofile Produce Individual Time Profiles for Plotting

Description

iprofile is used for plotting individual profiles over time for objects obtained from dynamic mod-
els. It produces output for plotting recursive fitted values for individual time profiles from such
models.

See mprofile for plotting marginal profiles.

Usage

S3 method for class 'iprofile'
plot(x, nind=1, observed=TRUE, intensity=FALSE,
add=FALSE, lty=NULL, pch=NULL, ylab=NULL, xlab=NULL,
main=NULL, ylim=NULL, xlim=NULL, ...)

Arguments

x An object of class iprofile, e.g. x = iprofile(z, plotsd=FALSE), where
z is an object of class recursive, from carma, elliptic, gar, kalcount,
kalseries, kalsurv, or nbkal. If plotsd is If TRUE, plots standard devia-
tions around profile (carma and elliptic only).

nind Observation number(s) of individual(s) to be plotted.

observed If TRUE, plots observed responses.

intensity If z has class, kalsurv, and this is TRUE, the intensity is plotted instead of the
time between events.

add If TRUE, the graph is added to an existing plot.
lty, pch, main, ylim, xlim, xlab, ylab

See base plot.

... Arguments passed to other functions.

Value

iprofile returns information ready for plotting by plot.iprofile.

Author(s)

J.K. Lindsey

See Also

mprofile plot.residuals.

42 Laplace

Examples

Not run:
try this after you have repeated package installed
library(repeated)
times <- rep(1:20,2)
dose <- c(rep(2,20),rep(5,20))
mu <- function(p) exp(p[1]-p[3])*(dose/(exp(p[1])-exp(p[2]))*
(exp(-exp(p[2])*times)-exp(-exp(p[1])*times)))

shape <- function(p) exp(p[1]-p[2])*times*dose*exp(-exp(p[1])*times)
conc <- matrix(rgamma(40,1,scale=mu(log(c(1,0.3,0.2)))),ncol=20,byrow=TRUE)
conc[,2:20] <- conc[,2:20]+0.5*(conc[,1:19]-matrix(mu(log(c(1,0.3,0.2))),
ncol=20,byrow=TRUE)[,1:19])

conc <- ifelse(conc>0,conc,0.01)
z <- gar(conc, dist="gamma", times=1:20, mu=mu, shape=shape,
preg=log(c(1,0.4,0.1)), pdepend=0.5, pshape=log(c(1,0.2)))

plot individual profiles and the average profile
plot(iprofile(z), nind=1:2, pch=c(1,20), lty=3:4)
plot(mprofile(z), nind=1:2, lty=1:2, add=TRUE)

End(Not run)

Laplace Laplace Distribution

Description

These functions provide information about the Laplace distribution with location parameter equal
to m and dispersion equal to s: density, cumulative distribution, quantiles, log hazard, and random
generation.

The Laplace distribution has density

f(y) =
exp(−abs(y − µ)/σ)

(2σ)

where µ is the location parameter of the distribution and σ is the dispersion.

Usage

dlaplace(y, m=0, s=1, log=FALSE)
plaplace(q, m=0, s=1)
qlaplace(p, m=0, s=1)
rlaplace(n=1, m=0, s=1)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

Levy 43

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dexp for the exponential distribution and dcauchy for the Cauchy distribution.

Examples

dlaplace(5, 2, 1)
plaplace(5, 2, 1)
qlaplace(0.95, 2, 1)
rlaplace(10, 2, 1)

Levy Levy Distribution

Description

These functions provide information about the Levy distribution with location parameter equal to m
and dispersion equal to s: density, cumulative distribution, quantiles, and random generation.

The Levy distribution has density

f(y) =

√
σ

2π(y − µ)3
exp(−σ/(2(y − µ)))

where µ is the location parameter of the distribution and σ is the dispersion, and y > µ.

Usage

dlevy(y, m=0, s=1, log=FALSE)
plevy(q, m=0, s=1)
qlevy(p, m=0, s=1)
rlevy(n, m=0, s=1)

44 lin.diff.eqn

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dnorm for the normal distribution and dcauchy for the Cauchy distribution, two other stable distri-
butions.

Examples

dlevy(5, 2, 1)
plevy(5, 2, 1)
qlevy(0.6, 2, 1)
rlevy(10, 2, 1)

lin.diff.eqn Solution of Autonomous Linear Differential Equations

Description

lin.diff.eqn numerically solves a system of autonomous linear differential equations with given
initial conditions by matrix exponentiation.

Usage

lin.diff.eqn(A, initial, t=1)

Arguments

A A square matrix giving the coefficients of the equations.

initial The vector of initial values of the system.

t A scalar or vector of values of the independent variable for which solutions are
sought.

lvna 45

Value

A matrix of solutions with one row for each value of t.

Author(s)

J.K. Lindsey

Examples

a <- matrix(c(1,0,1,0,0,0,0,0,-1),ncol=3,byrow=TRUE)
x <- c(5,7,6)
lin.diff.eqn(a,x,1)
function giving the exact solution
exact <- function(t) c(8*exp(t)-3*exp(-t),7,6*exp(-t))
exact(1)

lvna Create a repeated Object, Leaving NAs

Description

lvna forms an object of class, repeated, from a response object and possibly time-varying or
intra-individual covariate (tvcov), and time-constant or inter-individual covariate (tccov) objects.
If there are NAs in any variables, it also creates a logical vector indicating which observations have
NAs either in the response or the covariate values. Subjects must be in the same order in all (three)
objects to be combined.

Such objects can be printed and plotted. Methods are available for extracting the response, the
numbers of observations per individual, the times, the weights, the units of measurement/Jacobian,
the nesting variable, the covariates, and their names: response, nobs, times, weights, delta,
nesting, covariates, and names.

Usage

lvna(response, ccov=NULL, tvcov=NULL)

Arguments

response An object of class, response (created by restovec), containing the response
variable information.

ccov An object of class, tccov (created by tcctomat), containing the time-constant
or inter-individual covariate information.

tvcov An object of class, tvcov (created by tvctomat), containing the time-varying
or intra-individual covariate information.

46 lvna

Value

Returns an object of class, repeated, containing a list of the response object (z$response, so
that, for example, the response vector is z$response$y; see restovec), possibly the two classes of
covariate objects (z$ccov and z$tvcov; see tcctomat and tvctomat), and a logical vector (z$NAs)
indicating which observations have an NA in the response or some covariate.

Author(s)

J.K. Lindsey

See Also

DataMethods, covariates, covind, delta, dftorep, names, nesting, nobs, read.list, read.surv,
response, resptype, restovec, rmna, tcctomat, times, transform, tvctomat, units, weights

Examples

y <- matrix(rnorm(20),ncol=5)
y[2,3] <- NA
tt <- c(1,3,6,10,15)
print(resp <- restovec(y,times=tt))
x <- c(0,0,1,1)
tcc <- tcctomat(x)
z <- matrix(rpois(20,5),ncol=5)
tvc <- tvctomat(z)
print(reps <- lvna(resp, tvcov=tvc, ccov=tcc))
response(reps)
response(reps, nind=2:3)
times(reps)
nobs(reps)
weights(reps)
covariates(reps)
covariates(reps,names="x")
covariates(reps,names="z")
names(reps)
nesting(reps)
because individuals are the only nesting, this is the same as
covind(reps)
binomial
y <- matrix(rpois(20,5),ncol=5)
y[2,3] <- NA
print(respb <- restovec(y,totals=y+matrix(rpois(20,5),ncol=5),times=tt))
print(repsb <- lvna(respb, tvcov=tvc, ccov=tcc))
response(repsb)
censored data
y <- matrix(rweibull(20,2,5),ncol=5)
print(respc <- restovec(y,censor=matrix(rbinom(20,1,0.9),ncol=5),times=tt))
print(repsc <- lvna(respc, tvcov=tvc, ccov=tcc))
if there is no censoring, censor indicator is not printed
response(repsc)
nesting clustered within individuals

mexp 47

nest <- c(1,1,2,2,2)
print(respn <- restovec(y,censor=matrix(rbinom(20,1,0.9),ncol=5),
times=tt,nest=nest))

print(repsn <- lvna(respn, tvcov=tvc, ccov=tcc))
response(respn)
times(respn)
nesting(respn)

mexp Matrix Exponentiation

Description

mexp calculates exp(t*x) for the square matrix, x, by spectral decomposition or series expansion.

Usage

mexp(x, t=1, type="spectral decomposition", n=20, k=3)

Arguments

x A square matrix.

t Constant multiplying the matrix.

type Algorithm used: spectral decomposition or series approximation.

n Number of terms in the series expansion.

k Constant divisor to avoid over- or underflow (series approximation only).

Value

mexp returns the exponential of a matrix.

Author(s)

J.K. Lindsey

Examples

x <- matrix(c(1,2,3,4),nrow=2)
mexp(x)

48 mprofile

mpower Power of a Matrix

Description

%^% calculates x^p for the square matrix, x, by spectral decomposition.

Usage

x%^%p

Arguments

x A square matrix.

p The power to which the matrix is to be raised.

Value

%^% returns the power of a matrix.

Author(s)

J.K. Lindsey

Examples

Not run:
x <- matrix(c(0.4,0.6,0.6,0.4),nrow=2)
x%^%2
x%^%10
x%^%20

End(Not run)

mprofile Produce Marginal Time Profiles for Plotting

Description

mprofile is used for plotting marginal profiles over time for models obtained from dynamic mod-
els, for given fixed values of covariates. These are either obtained from those supplied by the model,
if available, or from a function supplied by the user.

See iprofile for plotting individual profiles from recursive fitted values.

mprofile 49

Usage

S3 method for class 'mprofile'
plot(x, nind=1, intensity=FALSE, add=FALSE, ylim=range(z$pred, na.rm = TRUE),
lty=NULL, ylab=NULL, xlab=NULL, ...)

Arguments

x An object of class mprofile, e.g. x = mprofile(z, times=NULL, mu=NULL,
ccov, plotse=TRUE), where zAn object of class recursive, from carma, elliptic,
gar, kalcount, kalseries, kalsurv, or nbkal; times is a vector of time points
at which profiles are to be plotted; mu is the location regression as a function of
the parameters and the times for the desired covariate values; ccov is covari-
ate values for the profiles (carma only); and plotse when TRUE plots standard
errors (carma only).

nind Observation number(s) of individual(s) to be plotted. (Not used if mu is sup-
plied.)

intensity If TRUE, the intensity is plotted instead of the time between events. Only for
models produced by kalsurv.

add If TRUE, add contour to previous plot instead of creating a new one.
lty, ylim, xlab, ylab

See base plot.

... Arguments passed to other functions.

Value

mprofile returns information ready for plotting by plot.mprofile.

Author(s)

J.K. Lindsey

See Also

iprofile, plot.residuals.

Examples

Not run:
try after you get the repeated package
library(repeated)
times <- rep(1:20,2)
dose <- c(rep(2,20),rep(5,20))
mu <- function(p) exp(p[1]-p[3])*(dose/(exp(p[1])-exp(p[2]))*
(exp(-exp(p[2])*times)-exp(-exp(p[1])*times)))
shape <- function(p) exp(p[1]-p[2])*times*dose*exp(-exp(p[1])*times)
conc <- matrix(rgamma(40,1,scale=mu(log(c(1,0.3,0.2)))),ncol=20,byrow=TRUE)
conc[,2:20] <- conc[,2:20]+0.5*(conc[,1:19]-matrix(mu(log(c(1,0.3,0.2))),
ncol=20,byrow=TRUE)[,1:19])
conc <- ifelse(conc>0,conc,0.01)

50 Multiplicative Binomial

z <- gar(conc, dist="gamma", times=1:20, mu=mu, shape=shape,
preg=log(c(1,0.4,0.1)), pdepend=0.5, pshape=log(c(1,0.2)))

plot individual profiles and the average profile
plot(iprofile(z), nind=1:2, pch=c(1,20), lty=3:4)
plot(mprofile(z), nind=1:2, lty=1:2, add=TRUE)

End(Not run)

Multiplicative Binomial

Multiplicative Binomial Distribution

Description

These functions provide information about the multiplicative binomial distribution with parameters
m and s: density, cumulative distribution, quantiles, and random generation.

The multiplicative binomial distribution with total = n and prob = m has density

p(y) = c(n,m, s)

(
n

y

)
my(1−m)

n−y
s(y(n−y))

for y = 0, . . . , n, where c(.) is a normalizing constant.

Usage

dmultbinom(y, size, m, s, log=FALSE)
pmultbinom(q, size, m, s)
qmultbinom(p, size, m, s)
rmultbinom(n, size, m, s)

Arguments

y vector of frequencies

q vector of quantiles

p vector of probabilities

n number of values to generate

size vector of totals

m vector of probabilities of success

s vector of overdispersion parameters

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

MultPoisson 51

See Also

dbinom for the binomial, ddoublebinom for the double binomial, and dbetabinom for the beta
binomial distribution.

Examples

compute P(45 < y < 55) for y multiplicative binomial(100,0.5,1.1)
sum(dmultbinom(46:54, 100, 0.5, 1.1))
pmultbinom(54, 100, 0.5, 1.1)-pmultbinom(45, 100, 0.5, 1.1)
pmultbinom(2,10,0.5,1.1)
qmultbinom(0.025,10,0.5,1.1)
rmultbinom(10,10,0.5,1.1)

MultPoisson Multiplicative Poisson Distribution

Description

These functions provide information about the multiplicative Poisson distribution with parameters
m and s: density, cumulative distribution, quantiles, and random generation.

The multiplicative Poisson distribution with mu = m has density

p(y) = c(µ, λ) exp(−µ)µyλ(y2)/y!

with s <= 1 for y = 0, . . ., where c(.) is a normalizing constant.

Note that it only allows for underdispersion, not being defined for s > 1.

Usage

dmultpois(y, m, s, log=FALSE)
pmultpois(q, m, s)
qmultpois(p, m, s)
rmultpois(n, m, s)

Arguments

y vector of counts

q vector of quantiles

p vector of probabilities

n number of values to generate

m scalar or vector of means

s scalar or vector of overdispersion parameters, all of which must lie in (0,1).

log if TRUE, log probabilities are supplied.

52 Pareto

Author(s)

J.K. Lindsey

See Also

dpois for the Poisson, ddoublepois for the double Poisson, dpvfpois for the power variance
function Poisson, dconsul for the Consul generalized Poisson, dgammacount for the gamma count,
and dnbinom for the negative binomial distribution.

Examples

dmultpois(5,10,0.9)
pmultpois(5,10,0.9)
qmultpois(0.85,10,0.9)
rmultpois(10,10,0.9)

Pareto Pareto Distribution

Description

These functions provide information about the Pareto distribution with location parameter equal to
m and dispersion equal to s: density, cumulative distribution, quantiles, log hazard, and random
generation.

The Pareto distribution has density

f(y) =
σ

µ(σ − 1)(1 + y/(µ(σ − 1)))σ+1

where µ is the mean parameter of the distribution and σ is the dispersion.

This distribution can be obtained as a mixture distribution from the exponential distribution using a
gamma mixing distribution.

Usage

dpareto(y, m, s, log=FALSE)
ppareto(q, m, s)
qpareto(p, m, s)
rpareto(n, m, s)

Arguments

y vector of responses.
q vector of quantiles.
p vector of probabilities
n number of values to generate
m vector of location parameters.
s vector of dispersion parameters.
log if TRUE, log probabilities are supplied.

pkpd 53

Author(s)

J.K. Lindsey

See Also

dexp for the exponential distribution.

Examples

dpareto(5, 2, 2)
ppareto(5, 2, 2)
qpareto(0.9, 2, 2)
rpareto(10, 2, 2)

pkpd Pharmacokinetic Compartment Models

Description

Mean functions for use in fitting pharmacokineticcompartment models models.

mu1.0o1c: open zero-order one-compartment model

mu1.1o1c: open first-order one-compartment model

mu1.1o2c: open first-order two-compartment model (ordered)

mu1.1o2cl: open first-order two-compartment model (ordered, absorption and transfer equal)

mu1.1o2cc: open first-order two-compartment model (circular)

Simultaneous models for parent drug and metabolite:

mu2.0o1c: zero-order one-compartment model

mu2.0o2c1: zero-order two-compartment for parent, one-compartment for metabolite, model

mu2.0o2c2: zero-order two-compartment model for both parent and metabolite

mu2.1o1c: first-order one-compartment model

mu2.0o1cfp: zero-order one-compartment first-pass model

mu2.0o2c1fp: zero-order two-compartment for parent, one-compartment for metabolite, model
with first-pass

mu2.0o2c2fp: zero-order two-compartment model for both parent and metabolite with first-pass

mu2.1o1cfp: first-order one-compartment first-pass model

54 pkpd

Usage

mu1.0o1c(p, times, dose=1, end=0.5)
mu1.1o1c(p, times, dose=1)
mu1.1o2c(p, times, dose=1)
mu1.1o2cl(p, times, dose=1)
mu1.1o2cc(p, times, dose=1)
mu2.0o1c(p, times, dose=1, ind, end=0.5)
mu2.0o2c1(p, times, dose=1, ind, end=0.5)
mu2.0o2c2(p, times, dose=1, ind, end=0.5)
mu2.1o1c(p, times, dose=1, ind)
mu2.0o1cfp(p, times, dose=1, ind, end=0.5)
mu2.0o2c1fp(p, times, dose=1, ind, end=0.5)
mu2.0o2c2fp(p, times, dose=1, ind, end=0.5)
mu2.1o1cfp(p, times, dose=1, ind)

Arguments

p Vector of parameters. See the source file for details.

times Vector of times.

dose Vector of dose levels.

ind Indicator whether parent drug or metabolite.

end Time infusion ends.

Value

The profile of mean concentrations for the given times and doses is returned.

Author(s)

J.K. Lindsey

Examples

Not run:
library(repeated)
times <- rep(1:20,2)
dose <- c(rep(2,20),rep(5,20))
set up a mean function for gar based on mu1.1o1c:
mu <- function(p) {
ka <- exp(p[2])
ke <- exp(p[3])
exp(p[2]-p[1])/(ka-ke)*(exp(-ke*times)-exp(-ka*times))}

conc <- matrix(rgamma(40,2,scale=mu(log(c(1,0.3,0.2)))/2),ncol=20,byrow=TRUE)
conc[,2:20] <- conc[,2:20]+0.5*(conc[,1:19]-matrix(mu(log(c(1,0.3,0.2))),
ncol=20,byrow=TRUE)[,1:19])

conc <- ifelse(conc>0,conc,0.01)
gar(conc, dist="gamma", times=1:20, mu=mu, preg=log(c(1,0.4,0.1)),
pdepend=0.1, pshape=1)

changing variance

plot.residuals 55

shape <- mu
gar(conc, dist="gamma", times=1:20, mu=mu, preg=log(c(0.5,0.4,0.1)),
pdep=0.1, shape=shape, pshape=log(c(0.5,0.4,0.1)))

End(Not run)

plot.residuals Plot Residuals

Description

plot.residuals is used for plotting residuals from models obtained from dynamic models for
given subsets of the data.

Usage

S3 method for class 'residuals'
plot(x, X=NULL, subset=NULL, ccov=NULL, nind=NULL,
recursive=TRUE, pch=20, ylab="Residual", xlab=NULL,
main=NULL, ...)

Arguments

x An object of class recursive, from carma, gar, kalcount, kalseries, kalsurv,
or nbkal.

X Vector of of values for the x-axis. If missing, time is used. It can also be speci-
fied by the strings "response" or "fitted".

subset A logical vector defining which observations are to be used.

ccov If the name of a time-constant covariate is supplied, separate plots are made for
each distinct value of that covariate.

nind Observation number(s) of individual(s) to be plotted.

recursive If TRUE, plot recursive residuals, otherwise ordinary residuals.

pch, ylab, xlab, main, ...
Plotting control options.

Author(s)

J.K. Lindsey

See Also

carma, gar, kalcount, kalseries, kalsurv, nbkal plot.iprofile, plot.mprofile.

56 PowerExponential

Examples

Not run:
library(repeated)
times <- rep(1:20,2)
dose <- c(rep(2,20),rep(5,20))
mu <- function(p) exp(p[1]-p[3])*(dose/(exp(p[1])-exp(p[2]))*
(exp(-exp(p[2])*times)-exp(-exp(p[1])*times)))

shape <- function(p) exp(p[1]-p[2])*times*dose*exp(-exp(p[1])*times)
conc <- matrix(rgamma(40,2,scale=mu(log(c(1,0.3,0.2)))/2),ncol=20,byrow=TRUE)
conc[,2:20] <- conc[,2:20]+0.5*(conc[,1:19]-matrix(mu(log(c(1,0.3,0.2))),
ncol=20,byrow=TRUE)[,1:19])

conc <- ifelse(conc>0,conc,0.01)
z <- gar(conc, dist="gamma", times=1:20, mu=mu, shape=shape,
preg=log(c(1,0.4,0.1)), pdepend=0.1, pshape=log(c(1,0.2)))

plot.residuals(z, subset=1:20, main="Dose 1")
plot.residuals(z, x="fitted", subset=1:20, main="Dose 1")
plot.residuals(z, x="response", subset=1:20, main="Dose 1")

End(Not run)

PowerExponential Power Exponential Distribution

Description

These functions provide information about the power exponential distribution with mean parameter
equal to m, dispersion equal to s, and family parameter equal to f: density, cumulative distribution,
quantiles, log hazard, and random generation.

The power exponential distribution has density

f(y) =
exp(−(absy − µ/

√
σ)2ν/2)√

σGamma(1 + 1/(2ν))21+1/(2ν)

where µ is the mean of the distribution, σ is the dispersion, and ν is the family parameter. ν = 1
yields a normal distribution, ν = 0.5 a Laplace distribution, and ν = ∞ a uniform distribution.

Usage

dpowexp(y, m=0, s=1, f=1, log=FALSE)
ppowexp(q, m=0, s=1, f=1)
qpowexp(p, m=0, s=1, f=1)
rpowexp(n, m=0, s=1, f=1)

Arguments

y vector of responses.

q vector of quantiles.

PvfPoisson 57

p vector of probabilities

n number of values to generate

m vector of means.

s vector of dispersion parameters.

f vector of family parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

Examples

dpowexp(5, 5, 1, 2)
ppowexp(5, 5, 1, 2)
qpowexp(0.5, 5, 1, 2)
rpowexp(10, 5, 1, 2)

PvfPoisson Power Variance Function Poisson Distribution

Description

These functions provide information about the overdispersed power variance function Poisson dis-
tribution with parameters m, s, and f: density, cumulative distribution, quantiles, and random gen-
eration. This function is obtained from a Poisson distribution as a mixture with a power variance
distribution. In the limit, for f=0, the mixing distribution is gamma so that it is a negative binomial
distribution. For f=0.5, the mixing distribution is inverse Gaussian. For f<0, the mixing distribu-
tion is a compound distribution of the sum of a Poisson number of gamma distributions. For f=1, it
is undefined.

The power variance function Poisson distribution with m = µ, the mean, s = θ, and f = α has
density

p(y) =
exp(−µ((θ + 1)α/θα − θ)/α)

y!

y∑
i=1

cyi(α)µ
i(θ + 1)iα−y/θi(α−1)

for y = 0, . . ., where c_{yi}(f) are coefficients obtained by recursion.

Usage

dpvfpois(y, m, s, f, log=FALSE)
ppvfpois(q, m, s, f)
qpvfpois(p, m, s, f)
rpvfpois(n, m, s, f)

58 read.list

Arguments

y vector of counts
q vector of quantiles
p vector of probabilities
n number of values to generate
m scalar or vector of means
s scalar or vector of overdispersion parameters
f scalar or vector of family parameters, all < 1
log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dpois for the Poisson, ddoublepois for the double Poisson, dmultpois for the multiplicative Pois-
son, dconsul for the Consul generalized Poisson, dgammacount for the gamma count, and dnbinom
for the negative binomial distribution.

Examples

dpvfpois(5,10,0.9,0.5)
ppvfpois(5,10,0.9,0.5)
qpvfpois(0.85,10,0.9,0.5)
rpvfpois(10,10,0.9,0.5)

read.list Read a List of Matrices from a File for Unbalanced Repeated Mea-
surements

Description

read.list reads sets of lines of data from a file and creates a list of matrices. Different sets of lines
may be have different lengths.

Usage

read.list(file="", skip=0, nlines=2, order=NULL)

Arguments

file Name of the file to read
skip Number of lines to skip at the beginning of the file
nlines Number of lines per matrix
order Order in which the lines are to be used as columns of the matrix. If NULL, they

are placed in the order read.

read.rep 59

Value

The list of matrices, each with nlines columns, is returned.

Author(s)

J.K. Lindsey

See Also

lvna, read.rep, read.surv, restovec, rmna, tvctomat

Examples

Not run: y <- read.list("test.dat")

read.rep Read a Rectangular Data Set from a File to Create a repeated Object

Description

dftorep forms an object of class, repeated, from data read from a file with the option of remov-
ing any observations where response and covariate values have NAs. For repeated measurements,
observations on the same individual must be together in the file. A number of validity checks are
performed on the data.

Such objects can be printed and plotted. Methods are available for extracting the response, the
numbers of observations per individual, the times, the weights, the units of measurement/Jacobian,
the nesting variable, the covariates, and their names: response, nobs, times, weights, delta,
nesting, covariates, and names.

Usage

read.rep(file, header=TRUE, skip=0, sep = "", na.strings="NA",
response, id=NULL, times=NULL, censor=NULL, totals=NULL,
weights=NULL, nest=NULL, delta=NULL, coordinates=NULL,
type=NULL, ccov=NULL, tvcov=NULL, na.rm=TRUE)

Arguments

file A file name from which to read the data with variables as columns and observa-
tions as rows.

header A logical value indicating whether the file contains the names of the variables
as the line before the first row of data.

skip The number of lines of the file to skip before beginning to read data.

sep The field separator character. Values on each line of the file are separated by this
character.

na.strings A vector of strings defining what values are to be assigned NA.

60 read.rep

response A character vector giving the column name(s) of the dataframe for the response
variable(s).

id A character vector giving the column name of the dataframe for the identifica-
tion numbers of the individuals. If the numbers are not consecutive integers, a
warning is given.

If NULL, one observation per individual is assumed if times is also NULL,
other time series is assumed.

times An optional character vector giving the column name of the dataframe for the
times vector.

censor An optional character vector giving the column name(s) of the dataframe for
the censor indicator(s). This must be the same length as response. Responses
without censor indicator can have a column either of all NAs or all 1s.

totals An optional character vector giving the column name(s) of the dataframe for the
totals for binomial data. This must be the same length as response. Responses
without censor indicator can have a column all NAs.

weights An optional character vector giving the column name of the dataframe for the
weights vector.

nest An optional character vector giving the column name of the dataframe for the
nesting vector within individuals.

This is the second level of nesting for repeated measurements, with the individ-
ual being the first level. Values for an individual must be consecutive increasing
integers.

delta An optional character vector giving the column name(s) of the dataframe for the
units of measurement/Jacobian(s) of the response(s). This must be the same
length as response. Responses without units of measurement/Jacobian can
have a column all NAs.

If all response variables have the same unit of measurement, this can be that one
number. If each response variable has the same unit of measurement for all its
values, this can be a numeric vector of length the number of response variables.

coordinates An optional character vector giving the two or three column name(s) of the
dataframe for the spatial coordinates.

type An optional character vector giving the types of response variables: nominal,
ordinal, discrete, duration, continuous, multivariate, or unknown.

ccov An optional character vector giving the column names of the dataframe for the
time-constant or inter-individual covariates. For repeated measurements, if the
value is not constant for all observations on an individual, an error is produced.

tvcov An optional character vector giving the column names of the dataframe for the
time-varying or intra-individual covariates.

na.rm If TRUE, observations with NAs in any variables selected are removed in the
object returned. Otherwise, the corresponding indicator variable is returned in a
slot in the object.

read.surv 61

Value

Returns an object of class, repeated, containing a list of the response object (z$response, so that,
for example, the response vector is z$response$y; see restovec), and possibly the two classes of
covariate objects (z$ccov and z$tvcov; see tcctomat and tvctomat).

Author(s)

J.K. Lindsey

See Also

dftorep, lvna, read.list, restovec, rmna, tcctomat, tvctomat

Examples

Not run: read.rep("test.dat", resp=c("y1","y2"), times="tt", id="id",
Not run: totals=c("tot1","tot2"), tvcov="x",ccov="x2")

read.surv Read a List of Matrices from a File for Repeated Times to Events

Description

read.surv reads sets of lines of data from a file. Each set may contain a series of duration times
followed by a censor indicator for the last value (all=FALSE) or a series of pairs of times followed
by their censor indicators (all=TRUE).

Usage

read.surv(file="", skip=0, nlines=1, cumulative=TRUE, all=TRUE)

Arguments

file Name of the file to read

skip Number of lines to skip at the beginning of the file

nlines Number of lines in each series of duration times

cumulative If TRUE, the times are cumulative and differences are taken to obtain times
between events. Otherwise, the times are used unchanged.

all If TRUE, all times have accompanying censor indicators; otherwise, only the
last one does.

Value

A list containing a list of vectors with the series of times and a vector of censor indicators for the
last time of each series is returned.

62 restovec

Author(s)

J.K. Lindsey

See Also

lvna, read.list, read.rep, restovec, rmna

Examples

Not run: y <- read.surv("test.dat")

restovec Create a response Object

Description

restovec can produce an object of class, response, from a vector of (1) independent univariate
responses or (2) a single time series.

It can produce such an object from repeated measurements in the form of (1) a list of vectors of
event histories, (2) a list of two or more column matrices with times, response values, and and other
information or (3) a matrix or dataframe of response values. The first two are for unbalanced data
and the third for balanced data.

Multivariate responses can be supplied as (1) a three-dimensional array of balanced repeated mea-
surements, (2) lists of matrices for unbalanced repeated measurements, or (3) a matrix with either
(a) several time series or (b) single observations per individual on several variables.

In formula and functions, the key words, times can be used to refer to the response times from
the data object as a covariate, individuals to the index for individuals as a factor covariate, and
nesting the index for nesting as a factor covariate. The latter two only work for W&R notation.

NAs can be detected with lvna or removed with rmna (where necessary, in coordination with the
appropriate covariates) to create a repeated object.

response objects can be printed and plotted. Methods are available for extracting the response, the
numbers of observations per individual, the times, the weights, the units of measurement/Jacobian,
and the nesting variable: response, nobs, times, weights, delta, and nesting.

The response and or the times may be transformed using transform(z, newy=fcn1(y), times=fcn2(times))
where fcn1 and fcn2 are transformations and y is the name of a response variable. When the
response is transformed, the Jacobian is automatically calculated. Note that, if the unit of pre-
cision/Jacobian (delta) is available in the response object, this is automatically included in the
calculation of the likelihood function in all library model functions.

Usage

restovec(response=NULL, times=NULL, nest=NULL, coordinates=NULL,
censor=NULL, totals=NULL, weights=NULL, delta=NULL,
type=NULL, names=NULL, units=NULL, oldresponse=NULL,
description=NULL)

restovec 63

Arguments

response For (1) independent univariate responses with one observation per individual or
(2) a single time series, one vector may be supplied (in the latter case, the times
must be given even if equally spaced).
Univariate repeated measurements responses can be given (1) if balanced, as a
matrix or dataframe of response values with dimensions: number of individuals
by number of responses/individual, (2) a list of vectors of event histories, or (3)
a list of one or more column matrices, for each individual, with response values
in the first column and times in the second (if there are no times, set times to
FALSE), possibly followed by columns with nesting categories, binomial totals,
censoring indicators, and/or units of measurement.
Multivariate responses can be supplied as (1) a three-dimensional array of bal-
anced repeated measurements with dimensions: number of individuals by num-
ber of responses/individual by number of variables, (2) a list of matrices for
unbalanced repeated measurements each with dimensions: number of responses
on that individual by number of variables, plus a column for times if available
(otherwise set times to FALSE), or (3) a matrix with either (a) several time
series, having dimensions: length of time series by by number of times series,
or (b) single observations per individual on several variables with dimensions:
number of individuals by number of variables. In all but case (1), type must
be a character vector with length equal to the number of responses. In case (2),
where applicable, censor, totals, and delta must be supplied as lists of ma-
trices of the same size as for response, and nest and weights as lists of vectors
of lengths equal to the number of observations on each individual.

times When response is a matrix or multivariate array, these can be (1) a vector when
the times are the same for all individuals, possibly unequally-spaced, or (2) a
matrix with dimensions: number of individuals by number of responses/individual.
Not necessary if times are equally spaced, except if a vector containing a single
time series is supplied (if not given in this case, it takes the responses to be in-
dependent, not a time series). For clustered data with no time ordering, set to
FALSE.

nest This is the second level of nesting, with the individual being the first level. Val-
ues for an individual must be consecutive increasing integers with all responses
in the same cluster grouped together. For example, with three clusters of four
observations each, the code would be 1,1,1,1,2,2,2,2,3,3,3,3.
When response is a matrix or multivariate array, this can be a vector of length
equal to the number of responses/individual indicating which responses belong
to which nesting category.
If response is a multivariate list, this must also be a list.
When response is a univariate list of unbalanced repeated measurements, the
nesting indicator may instead be included in that list but must respect the same
ordering as described above.

coordinates When response is a vector, a two-column matrix giving the coordinates for
spatial data.

censor When response is a matrix, this can be (1) a vector of the same length as the
number of individuals, containing a binary indicator, with a one indicating that

64 restovec

the last time period in the series terminated with an event and zero that it was
censored, or (2) a matrix of the same size as response.
When response is a multivariate array, this can be (1) a matrix with dimensions:
number of individuals by number of responses, or (2) an array of the same size
as response. In the first case, for each column corresponding to a duration
response, it should contain a binary indicator, with a one indicating that the last
time period in the series terminated with an event and zero that it was censored,
and NAs in columns not containing durations. In the second case, layers not
corresponding to duration responses should contain NAs.
If response is a multivariate list, this must also be a list.
For event history data, even with no censoring, an appropriate vector of ones
must be supplied.
When response is a univariate list of unbalanced repeated measurements, the
censoring indicator may instead be included in that list.

totals If the response is a matrix of binomial counts, this can be (1) a corresponding
vector (one total per individual) or (2) a matrix of totals.
When response is a multivariate array, this can be (1) a matrix with dimensions:
number of individuals by number of responses if all binomial responses for an
individual have the same total, or (2) an array of the same size as response. In
the first case, for each column corresponding to a binomial response, it should
contain the corresponding totals, with NAs in columns not containing binomial.
In the second case, layers not corresponding to binomial responses should con-
tain NAs.
If response is a multivariate list, this must also be a list.
When response is a univariate list of unbalanced repeated measurements, the
totals may instead be included in that list.

weights A vector, matrix, array, or list of vectors of frequencies or weights, with one
value per response. In other words, a multivariate response has only one corre-
sponding weight value.

delta For continuous measurements, the unit of precision (if not equal to unity) for
each response: a scalar, vector, matrix, array, or list of the same dimensions
as response. For example, if responses have two decimal places (12.34),
delta=0.01. If the response has been transformed, this should be multiplied
by the numerical values of the Jacobian. When the transform method is ap-
plied to the response object, this is automatically updated.

type The type(s) of observations: nominal, ordinal, discrete, duration, continuous, or
unknown. If not specified otherwise, those responses with delta and no censor
are assumed to be continuous, those with censor indicator are assumed to
be duration, those with totals are assumed to be nominal, and all others
unknown.

names Optional name(s) of the response variable(s).

units Optional character vector giving units of measurement of response(s).

oldresponse An existing response object to which the new data are to be added.

description An optional named list of character vectors with names of some or all response
variables containing their descriptions.

restovec 65

Value

Returns an object of class, response, containing a vector with the responses (z$y), a correspond-
ing vector of times (z$times) if applicable, a vector giving the number of observations per indi-
vidual (z$nobs, set to a scalar 1 if observations are independent), type (z$delta), and possibly
binomial totals (z$n), nesting (clustering, z$nest), censoring (z$censor), weights (z$wt), unit of
precision/Jacobian (z$delta), units of measurement (z$units), and description (z$description)
information.

Author(s)

J.K. Lindsey

See Also

DataMethods, covind, delta, description, lvna, names, nesting, nobs, read.list, read.surv,
response, resptype, rmna, tcctomat, times, transform, tvctomat, units, weights

Examples

#
#continuous response
y <- matrix(rnorm(20),ncol=5)
times assumed to be 1:5
restovec(y, units="m")
#unequally-spaced times
tt <- c(1,3,6,10,15)
print(resp <- restovec(y, times=tt, units="m",
description=list(y="Response measured in metres")))
response(resp)
response(resp, nind=2:3)
response(transform(resp, y=1/y))
transform(resp, y=1/y, units="1/m")
units(resp)
description(resp)
times(resp)
times(transform(resp, times=times-6))
nobs(resp)
weights(resp)
nesting(resp)
because individuals are the only nesting, this is the same as
covind(resp)
#
binomial response
y <- matrix(rpois(20,5),ncol=5)
responses summarized as relative frequencies
print(respb <- restovec(y, totals=y+matrix(rpois(20,5),ncol=5), times=tt))
response(respb)
#
censored data
y <- matrix(rweibull(20,2,5),ncol=5)
print(respc <- restovec(y, censor=matrix(rbinom(20,1,0.9),ncol=5), times=tt))

66 rmna

if there is no censoring, censor indicator is not printed
response(respc)
nesting clustered within individuals
nest <- c(1,1,2,2,2)
print(respn <- restovec(y, censor=matrix(rbinom(20,1,0.9),ncol=5),
times=tt,nest=nest))

response(respn)
times(respn)
nesting(respn)
#
multivariate response
restovec(y, censor=matrix(rbinom(20,1,0.9),ncol=5),
units=c("m","days","l","cm","mon"),
type=c("continuous","duration","continuous","continuous","duration"),
description=list(y1="First continuous variable",
y2="First duration variable",y3="Second continuous variable",
y4="Third continuous variable",y5="Second duration variable"))

restovec(y, censor=matrix(rbinom(20,1,0.9),ncol=5),
names=c("a","b","c","d","e"), units=c("m","days","l","cm","mon"),
type=c("continuous","duration","continuous","continuous","duration"),
description=list(a="First continuous variable",
b="First duration variable",c="Second continuous variable",
d="Third continuous variable",e="Second duration variable"))

rmna Create a repeated Object, Removing NAs

Description

rmna forms an object of class, repeated, from a response object and possibly time-varying or
intra-individual covariate (tvcov), and time-constant or inter-individual covariate (tccov) objects,
removing any observations where response and covariate values have NAs. Subjects must be in the
same order in all (three) objects to be combined.

Such objects can be printed and plotted. Methods are available for extracting the response, the
numbers of observations per individual, the times, the weights, the units of measurement/Jacobian,
the nesting variable, the covariates, and their names: response, nobs, times, weights, delta,
nesting, covariates, and names.

Usage

rmna(response, ccov=NULL, tvcov=NULL)

Arguments

response An object of class, response (created by restovec), containing the response
variable information.

ccov An object of class, tccov (created by tcctomat), containing the time-constant
or inter-individual covariate information.

tvcov An object of class, tvcov (created by tvctomat), containing the time-varying
or intra-individual covariate information.

rmna 67

Value

Returns an object of class, repeated, containing a list of the response object (z$response, so that,
for example, the response vector is z$response$y; see restovec), and possibly the two classes of
covariate objects (z$ccov and z$tvcov; see tcctomat and tvctomat).

Author(s)

J.K. Lindsey

See Also

DataMethods, covariates, covind, delta, dftorep, lvna, names, nesting, nobs, read.list,
read.surv, response, resptype, restovec, tcctomat, times, transform, tvctomat, units,
weights

Examples

y <- matrix(rnorm(20),ncol=5)
tt <- c(1,3,6,10,15)
print(resp <- restovec(y,times=tt))
x <- c(0,0,1,1)
tcc <- tcctomat(x)
z <- matrix(rpois(20,5),ncol=5)
tvc <- tvctomat(z)
print(reps <- rmna(resp, tvcov=tvc, ccov=tcc))
response(reps)
response(reps, nind=2:3)
times(reps)
nobs(reps)
weights(reps)
covariates(reps)
covariates(reps,names="x")
covariates(reps,names="z")
names(reps)
nesting(reps)
because individuals are the only nesting, this is the same as
covind(reps)
#
use in glm
rm(y,x,z)
glm(y~x+z,data=as.data.frame(reps))
#
binomial
y <- matrix(rpois(20,5),ncol=5)
print(respb <- restovec(y,totals=y+matrix(rpois(20,5),ncol=5),times=tt))
print(repsb <- rmna(respb, tvcov=tvc, ccov=tcc))
response(repsb)
#
censored data
y <- matrix(rweibull(20,2,5),ncol=5)
print(respc <- restovec(y,censor=matrix(rbinom(20,1,0.9),ncol=5),times=tt))

68 rmutil

print(repsc <- rmna(respc, tvcov=tvc, ccov=tcc))
if there is no censoring, censor indicator is not printed
response(repsc)
#
nesting clustered within individuals
nest <- c(1,1,2,2,2)
print(respn <- restovec(y,censor=matrix(rbinom(20,1,0.9),ncol=5),
times=tt,nest=nest))

print(repsn <- rmna(respn, tvcov=tvc, ccov=tcc))
response(respn)
times(respn)
nesting(respn)

rmutil Utilities for Repeated Measurements Library

Description

%^% Power of a Matrix

covariates Extract Covariate Matrices from a Data Object

covind Nesting Indicator for Observations within Individuals in a Data Object

dbetabinom Density of Beta Binomial Distribution

dboxcox Density of Box-Cox Distribution

dburr Density of Burr Distribution

ddoublebinom Density of Double Binomial Distribution

ddoublepois Density of Double Poisson Distribution

delta Extract Units of Measurement Vector from a Data Object

dftorep Transform a Dataframe to a repeated Object

dgammacount Density of Gamma Count Distribution

dgextval Density of Generalized Extreme Value Distribution

dggamma Density of Generalized Gamma Distribution

dginvgauss Density of Generalized Inverse Gaussian Distribution

dglogis Density of Generalized Logistic Distribution

dgweibull Density of Generalized Weibull Distribution

dhjorth Density of Hjorth Distribution

dinvgauss Density of Inverse Gaussian Distribution

dlaplace Density of Laplace Distribution

dlevy Density of Levy Distribution

dmultbinom Density of Multiplicative Binomial Distribution

dmultpois Density of Multiplicative Poisson Distribution

dpareto Density of Pareto Distribution

rmutil 69

dpowexp Density of Power Exponential Distribution

dpvfpois Density of Power Variance Function Poisson Distribution

dsimplex Density of Simplex Distribution

dskewlaplace Density of Skew Laplace Distribution

finterp Formula Interpreter

fmobj Object Finder in Formulae

fnenvir Check Covariates and Parameters of a Function

formula Extract Formula Used to Create Time-constant Covariate Matrix in a Data Object

gauss.hermite Calculate Gauss-Hermite Quadrature Points

gettvc Create Time-varying Covariates

int Vectorized One-dimensional Numerical Integration

int2 Vectorized Two-dimensional Numerical Integration

iprofile Produce Individual Time Profiles for Plotting

lin.diff.eqn Solution of Autonomous Linear Differential Equations

lvna Create a Repeated Object Leaving NAs

mexp Matrix Exponentiation

mprofile Produce Marginal Time Profiles for Plotting

names Extract Names of Covariates from a Data Object

nesting Extract Nesting Indicators from a Data Object

nobs Extract Number of Observations per Individual from a Data Object

pbetabinom Distribution Function of Beta Binomial Distribution

pboxcox Distribution Function of Box-Cox Distribution

pburr Distribution Function of Burr Distribution

pdoublebinom Distribution Function of Double Binomial Distribution

pdoublepois Distribution Function of Double Poisson Distribution

pgammacount Distribution Function of Gamma Count Distribution

pgextval Distribution Function of Generalized Extreme Value Distribution

pggamma Distribution Function of Generalized Gamma Distribution

pginvgauss Distribution Function of Generalized Inverse Gaussian Distribution

pglogis Distribution Function of Generalized Logistic Distribution

pgweibull Distribution Function of Generalized Weibull Distribution

phjorth Distribution Function of Hjorth Distribution

pinvgauss Distribution Function of Inverse Gaussian Distribution

pkpd Pharmacokinetic Model Functions

plaplace Distribution Function of Laplace Distribution

plevy Distribution Function of Levy Distribution

plot.residuals Plot Residuals for Carma

70 rmutil

pmultbinom Distribution Function of Multiplicative Binomial Distribution

pmultpois Distribution Function of Multiplicative Poisson Distribution

ppareto Distribution Function of Pareto Distribution

ppowexp Distribution Function of Power Exponential Distribution

ppvfpois Distribution Function of Power Variance Function Poisson Distribution

psimplex Distribution Function of Simplex Distribution

pskewlaplace Distribution Function of Skew Laplace Distribution

qbetabinom Quantiles of Beta Binomial Distribution

qboxcox Quantiles of Box-Cox Distribution

qburr Quantiles of Burr Distribution

qdoublebinom Quantiles of Double Binomial Distribution

qdoublepois Quantiles of Double Poisson Distribution

qgammacount Quantiles of Gamma Count Distribution

qgextval Quantiles of Generalized Extreme Value Distribution

qggamma Quantiles of Generalized Gamma Distribution

qginvgauss Quantiles of Generalized Inverse Gaussian Distribution

qglogis Quantiles of Generalized Logistic Distribution

qgweibull Quantiles of Generalized Weibull Distribution

qhjorth Quantiles of Hjorth Distribution

qinvgauss Quantiles of Inverse Gaussian Distribution

qlaplace Quantiles of Laplace Distribution

qlevy Quantiles of Levy Distribution

qmultbinom Quantiles of Multiplicative Binomial Distribution

qmultpois Quantiles of Multiplicative Poisson Distribution

qpareto Quantiles of Pareto Distribution

qpowexp Quantiles of Power Exponential Distribution

qpvfpois Quantiles of Power Variance Function Poisson Distribution

qsimplex Quantiles of Simplex Distribution

qskewlaplace Quantiles of Skew Laplace Distribution

rbetabinom Random Number Generation for Beta Binomial Distribution

rboxcox Random Number Generation for Box-Cox Distribution

rburr Random Number Generation for Burr Distribution

rdoublebinom Random Number Generation for Double Binomial Distribution

rdoublepois Random Number Generation for Double Poisson Distribution

read.list Read a List of Matrices of Unbalanced Repeated Measurements from a File

read.rep Read a Rectangular Data Set from a File to Create a repeated Object

read.surv Read a List of Vectors of Event Histories from a File

runge.kutta 71

response Extract Response Vector from a Data Object

restovec Create a Response Object

rgammacount Random Number Generation for Gamma Count Distribution

rgextval Random Number Generation for Generalized Extreme Value Distribution

rggamma Random Number Generation for Generalized Gamma Distribution

rginvgauss Random Number Generation for Generalized Inverse Gaussian Distribution

rglogis Random Number Generation for Generalized Logistic Distribution

rgweibull Random Number Generation for Generalized Weibull Distribution

rhjorth Random Number Generation for Hjorth Distribution

rinvgauss Random Number Generation for Inverse Gaussian Distribution

rlaplace Random Number Generation for Laplace Distribution

rlevy Random Number Generation for Levy Distribution

rmna Create a Repeated Object

rmultbinom Random Number Generation for Multiplicative Binomial Distribution

rmultpois Random Number Generation for Multiplicative Poisson Distribution

rpareto Random Number Generation for Pareto Distribution

rpowexp Random Number Generation for Power Exponential Distribution

rpvfpois Random Number Generation for Power Variance Function Poisson Distribution

rsimplex Random Number Generation for Simplex Distribution

rskewlaplace Random Number Generation for Skew Laplace Distribution

runge.kutta Runge-Kutta Method for Solving Differential Equations

tcctomat Create a Time-constant Covariate (tccov) Object

times Extract Times Vector from a Data Object

transform Transform Variables in a Data Object

tvctomat Create a Time-varying Covariate (tvcov) Object

wr Find the Response Vector and Design Matrix for a Model Formula

runge.kutta Runge-Kutta Method for Solving Differential Equations

Description

runge.kutta numerically solves a differential equation by the fourth-order Runge-Kutta method.

Usage

runge.kutta(f, initial, x)

72 Simplex

Arguments

f A function dy/dx=func(y,x).

initial The initial value of y.

x A vector of values of x for which the values or y are required.

Value

A vector of values of y as solution of the function f corresponding to the values in x.

Author(s)

J.K. Lindsey

Examples

fn <- function(y,x) (x*y-y^2)/x^2
soln <- runge.kutta(fn,2,seq(1,3,by=1/128))
exact solution
exact <- seq(1,3,by=1/128)/(0.5+log(seq(1,3,by=1/128)))
rbind(soln, exact)

Simplex Simplex Distribution

Description

These functions provide information about the simplex distribution with location parameter equal
to m and shape equal to s: density, cumulative distribution, quantiles, and random generation.

The simplex distribution has density

f(y) =
1√

(2πσ(y(1− y))3)
exp(−((y − µ)/(µ(1− µ)))2/(2y(1− y)σ))

where µ is the location parameter of the distribution and σ is the shape, and 0 < y < 1.

Usage

dsimplex(y, m, s, log=FALSE)
psimplex(q, m, s)
qsimplex(p, m, s)
rsimplex(n, m, s)

SkewLaplace 73

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of shape parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dbeta for the beta distribution and dtwosidedpower for the two-sided power distribution, other
distributions for proportions between zero and one.

Examples

dsimplex(0.3, 0.5, 1)
psimplex(0.3, 0.5, 1)
qsimplex(0.1, 0.5, 1)
rsimplex(10, 0.5, 1)

SkewLaplace Skew Laplace Distribution

Description

These functions provide information about the skew Laplace distribution with location parameter
equal to m, dispersion equal to s, and skew equal to f: density, cumulative distribution, quantiles,
log hazard, and random generation. For f=1, this is an ordinary (symmetric) Laplace distribution.

The skew Laplace distribution has density

f(y) =
ν exp(−ν(y − µ)/σ)

(1 + ν2)σ

if y ≥ µ and else

f(y) =
ν exp((y − µ)/(νσ))

(1 + ν2)σ

where µ is the location parameter of the distribution, σ is the dispersion, and ν is the skew.

The mean is given by µ+ σ(1−ν2)√
2ν

and the variance by σ2(1+ν4)
2ν2 .

Note that this parametrization of the skew (family) parameter is different than that used for the
multivariate skew Laplace distribution in elliptic.

74 tcctomat

Usage

dskewlaplace(y, m=0, s=1, f=1, log=FALSE)
pskewlaplace(q, m=0, s=1, f=1)
qskewlaplace(p, m=0, s=1, f=1)
rskewlaplace(n, m=0, s=1, f=1)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of dispersion parameters.

f vector of skew parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

See Also

dexp for the exponential distribution, dcauchy for the Cauchy distribution, and dlaplace for the
Laplace distribution.

Examples

dskewlaplace(5, 2, 1, 0.5)
pskewlaplace(5, 2, 1, 0.5)
qskewlaplace(0.95, 2, 1, 0.5)
rskewlaplace(10, 2, 1, 0.5)

tcctomat Create a Time-constant, Inter-individual Covariate (tccov) Object

Description

tcctomat creates an object of class, tccov, from a vector or matrix containing time-constant or
inter-individual baseline covariates or a model formula. It can also combine two such objects.

Such objects can be printed. Methods are available for extracting the covariates, their names, and
the formula: covariates, names, and formula. The method, transform, can transform variables
in place or by adding new variables to the object.

To obtain the indexing to expand time-constant or inter-individual covariates to the size of a repeated
measurements response, use covind.

tcctomat 75

Usage

tcctomat(ccov, names=NULL, units=NULL, oldccov=NULL, dataframe=TRUE,
description=NULL)

Arguments

ccov A vector, matrix, or dataframe containing time-constant or inter-individual base-
line covariates with one row per individual, a model formula using vectors of the
same size, or an object of class, tccov. In the first two cases, the variables may
be factors; if dataframe=FALSE, these are transformed to indicator variables.

units Optional character vector specifying units of measurements of covariates.

names The names of the covariates (if the matrix does not have column names).

oldccov An object of class, tccov, to which ccov is to be added.

dataframe If TRUE and factor variables are present, the covariates are stored as a dataframe;
if FALSE, they are expanded to indicator variables. If no factor variables are
present, covariates are always stored as a matrix.

description An optional named list of character vectors with names of some or all covariates
containing their descriptions.

Value

Returns an object of class, tccov, containing one matrix or dataframe for the covariates (z$ccov)
with one row per individual and possibly the model formula (z$linear).

Author(s)

J.K. Lindsey

See Also

DataMethods, covariates, description, formula, lvna, names, restovec, rmna, transform,
tvctomat, units

Examples

x1 <- gl(4,1)
print(tcc1 <- tcctomat(~x1))
covariates(tcc1)
covariates(tcc1, name="x12")
tcctomat(x1)
tcctomat(x1, dataframe=FALSE)
x2 <- c(0,0,1,1)
print(tcc2 <- tcctomat(~x2, units="days"))
covariates(tcc2)
print(tcc3 <- tcctomat(~x1+x2))
covariates(tcc3)
covariates(tcc3, names=c("x12","x2"))
formula(tcc3)
names(tcc3)

76 tvctomat

print(tcc4 <- tcctomat(data.frame(x1,x2), units=c(NA,"days")))
covariates(tcc4)
print(tcc5 <- tcctomat(data.frame(x1,x2), dataframe=FALSE, units=c(NA,"days")))
covariates(tcc5)

tvctomat Create a Time-varying, Intra-individual Covariate (tvcov) Object

Description

tvctovmat creates an object of class, tvcov, from a list of matrices with time-varying or intra-
individual covariates for each individual or one matrix or dataframe of such covariate values. It can
also combine two such objects or add interactions among covariates.

Such objects can be printed. Methods are available for extracting the covariates and their names:
covariates and names. The method, transform, can transform variables in place or by adding
new variables to the object.

Usage

tvctomat(tvcov, names=NULL, units=NULL, interaction=NULL, ccov=NULL,
oldtvcov=NULL, dataframe=TRUE, description=NULL)

Arguments

tvcov Either (1) if unbalanced, a list of matrices or dataframes with time-varying or
intra-individual covariate values for each individual (one column per variable),
(2) if balanced, one matrix or dataframe of such covariate values (when there
is only one such covariate) with dimensions: number of individuals by number
of observations/individual, or (3) an object of class, tvcov. In the first two
cases, the variables may be factors; if dataframe=FALSE, these are transformed
to indicator variables.

names The names of the time-varying or intra-individual covariates in tvcov (if the ma-
trices do not have column names) or the names of the time-constant covariates
for which interactions are to be created.

units Optional character vector specifying units of measurements of covariates.
interaction A pair of index numbers or names of variables in tvcov, with that class, for

which an interaction is to be added or, if ccov is provided, a set of such names
of time-varying or intra-individual covariates for creating interactions with the
time-constant covariates.

ccov Time-constant or inter-individual covariates for which an interaction is to be
introduced with time-varying or intra-individual covariates in tvcov.

oldtvcov An object of class, tvcov, to which tvcov is to be added.
dataframe If TRUE and factor variables are present, the covariates are stored as a dataframe;

if FALSE, they are expanded to indicator variables. If no factor variables are
present, covariates are always stored as a matrix.

description An optional named list of character vectors with names of some or all covariates
containing their descriptions.

Two-Sided Power 77

Value

Returns an object of class, tvcov, containing a matrix or dataframe for the covariates (z$tvcov)
with one row per response per individual and a vector giving the number of observations per indi-
vidual (z$nobs).

Author(s)

J.K. Lindsey

See Also

DataMethods, covariates, description, formula, gettvc, lvna, names, restovec, rmna, tcctomat,
transform, units

Examples

z <- matrix(rpois(20,5),ncol=5)
print(tvc <- tvctomat(z, units="days"))
covariates(tvc)
names(tvc)
v <- data.frame(matrix(rep(c("a","b","c","d","e"),4),ncol=5),stringsAsFactors=TRUE)
print(tvc2 <- tvctomat(v, oldtvc=tvc, units=NA))
covariates(tvc2)
print(tvc3 <- tvctomat(v, oldtvc=tvc, dataframe=FALSE, units=NA))
covariates(tvc3)
print(tvc4 <- tvctomat(tvc2, interaction=c("z","v")))
covariates(tvc4)
x1 <- 1:4
x2 <- gl(4,1)
xx <- tcctomat(data.frame(x1,x2), dataframe=FALSE)
tvctomat(tvc3, interaction="z", ccov=xx)
tvctomat(tvc3, interaction="z", ccov=xx, names="x1")
tvctomat(tvc3, interaction="z", ccov=xx, names=c("x22","x23","x24"))
xx <- tcctomat(data.frame(x1,x2), dataframe=TRUE)
tvctomat(tvc2, interaction="z", ccov=xx)
tvctomat(tvc2, interaction="z", ccov=xx, names="x1")
tvctomat(tvc2, interaction="z", ccov=xx, names="x2")

Two-Sided Power Two-Sided Power Distribution

Description

These functions provide information about the two-sided power distribution with location parameter
equal to m and shape equal to s: density, cumulative distribution, quantiles, and random generation.

The two-sided power distribution has density

f(y) = s(
y

m
)s−1, y <= m

78 Two-Sided Power

f(y) = s(
1− y

1−m
)s−1, y >= m

where µ is the location parameter of the distribution and σ is the shape, and 0 < y < 1.

For σ = 1, this is the uniform distribution and for σ = 2, it is the triangular distribution.

Usage

dtwosidedpower(y, m, s=2, log=FALSE)
ptwosidedpower(q, m, s=2)
qtwosidedpower(p, m, s=2)
rtwosidedpower(n, m, s=2)

Arguments

y vector of responses.

q vector of quantiles.

p vector of probabilities

n number of values to generate

m vector of location parameters.

s vector of shape parameters.

log if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

References

van Dorp, J.R. and Kotz, S. (2002) A novel extension of the triangular distribution and its parameter
estimation. The Statistician 51, 63-79.

See Also

dbeta for the beta distribution and dsimplex for the simplex distribution, other distributions for
proportions between zero and one.

Examples

dtwosidedpower(0.3, 0.5, 3)
ptwosidedpower(0.3, 0.5, 3)
qtwosidedpower(0.1, 0.5, 3)
rtwosidedpower(10, 0.5, 3)

wr 79

wr Find the Response Vector and Design Matrix for a W&R Model For-
mula

Description

wr gives the response vector and design matrix for a formula in Wilkinson and Rogers notation.

Usage

wr(formula, data=NULL, expand=TRUE)

Arguments

formula A model formula.

data A data object or environment.

expand If FALSE, the covariates are read from the tccov object without expanding to
the length of the response variable.

Value

wr returns a list containing the response vector (z$response), if included in the formula, and the
design matrix (z$design) from the data object or environment supplied or from the global environ-
ment for the formula supplied.

Author(s)

J.K. Lindsey

Examples

y <- rnorm(20)
x <- gl(4,5)
z <- rpois(20,2)
wr(y~x+z)

Index

∗ array
contrast, 8
mexp, 47
mpower, 48

∗ design
contrast, 8

∗ distribution
Beta Binomial, 3
Box-Cox, 4
Burr, 6
Consul, 7
Double Binomial, 16
DoublePoisson, 17
Gamma Count, 28
Generalized Extreme Value, 29
Generalized Gamma, 30
Generalized Inverse Gaussian, 31
Generalized Logistic, 33
Generalized Weibull, 34
Hjorth, 36
Inverse Gaussian, 40
Laplace, 42
Levy, 43
Multiplicative Binomial, 50
MultPoisson, 51
Pareto, 52
PowerExponential, 56
PvfPoisson, 57
Simplex, 72
SkewLaplace, 73
Two-Sided Power, 77

∗ documentation
rmutil, 68

∗ file
read.list, 58
read.rep, 59
read.surv, 61

∗ hplot
iprofile, 41

mprofile, 48
plot.residuals, 55

∗ manip
DataMethods, 9
dftorep, 13
FormulaMethods, 26
gettvc, 35
lvna, 45
restovec, 62
rmna, 66
tcctomat, 74
tvctomat, 76

∗ math
gauss.hermite, 29
int, 37
int2, 39
lin.diff.eqn, 44
runge.kutta, 71

∗ models
pkpd, 53

∗ programming
finterp, 18
fmobj, 23
fnenvir, 24
wr, 79

∗ regression
contrast, 8

%^% (mpower), 48
%^%, 68

as.data.frame (DataMethods), 9
as.matrix (DataMethods), 9

Beta Binomial, 3
Box-Cox, 4
Burr, 6

C, 9
capply, 7
coef.gnlm (DataMethods), 9

80

INDEX 81

Consul, 7
contr.mean (contrast), 8
contr.sum, 8, 9
contrast, 8
contrasts, 9
covariates, 14, 19, 24, 45, 46, 59, 66–68,

74–77
covariates (DataMethods), 9
covariates.formulafn, 9
covariates.formulafn (FormulaMethods),

26
covind, 46, 65, 67, 68, 74
covind (DataMethods), 9

DataMethods, 9, 46, 65, 67, 75, 77
dbeta, 73, 78
dbetabinom, 16, 51, 68
dbetabinom (Beta Binomial), 3
dbinom, 3, 16, 51
dboxcox, 68
dboxcox (Box-Cox), 4
dburr, 35, 68
dburr (Burr), 6
dcauchy, 43, 44, 74
dconsul, 17, 28, 52, 58
dconsul (Consul), 7
ddoublebinom, 3, 51, 68
ddoublebinom (Double Binomial), 16
ddoublepois, 8, 28, 52, 58, 68
ddoublepois (DoublePoisson), 17
delta, 14, 45, 46, 59, 62, 65–68
delta (DataMethods), 9
description, 65, 75, 77
description (DataMethods), 9
deviance.gnlm (DataMethods), 9
dexp, 43, 53, 74
df, 35
df.residual.gnlm (DataMethods), 9
dftorep, 13, 46, 61, 67, 68
dgamma, 31
dgammacount, 17, 52, 58, 68
dgammacount (Gamma Count), 28
dgextval, 68
dgextval (Generalized Extreme Value), 29
dggamma, 68
dggamma (Generalized Gamma), 30
dginvgauss, 68
dginvgauss (Generalized Inverse

Gaussian), 31

dglogis, 68
dglogis (Generalized Logistic), 33
dgweibull, 68
dgweibull (Generalized Weibull), 34
dhjorth, 68
dhjorth (Hjorth), 36
dinvgauss, 32, 68
dinvgauss (Inverse Gaussian), 40
dlaplace, 68, 74
dlaplace (Laplace), 42
dlevy, 68
dlevy (Levy), 43
dlnorm, 31, 40
dlogis, 33
dmultbinom, 3, 16, 68
dmultbinom (Multiplicative Binomial), 50
dmultpois, 8, 17, 28, 58, 68
dmultpois (MultPoisson), 51
dnbinom, 17, 28, 52, 58
dnorm, 5, 40, 44
Double Binomial, 16
DoublePoisson, 17
dpareto, 68
dpareto (Pareto), 52
dpois, 8, 17, 28, 52, 58
dpowexp, 69
dpowexp (PowerExponential), 56
dpvfpois, 8, 17, 52, 69
dpvfpois (PvfPoisson), 57
dsimplex, 69, 78
dsimplex (Simplex), 72
dskewlaplace, 69
dskewlaplace (SkewLaplace), 73
dtwosidedpower, 73
dtwosidedpower (Two-Sided Power), 77
dweibull, 30, 31, 35

finterp, 18, 23, 24, 26, 27, 69
fmobj, 23, 69
fnenvir, 19, 24, 26, 27, 69
formula, 19, 69, 74, 75, 77
formula (DataMethods), 9
formula.formulafn, 10
formula.formulafn (FormulaMethods), 26
FormulaMethods, 19, 24, 26

Gamma Count, 28
gauss.hermite, 29, 69
Generalized Extreme Value, 29

82 INDEX

Generalized Gamma, 30
Generalized Inverse Gaussian, 31
Generalized Logistic, 33
Generalized Weibull, 34
gettvc, 35, 69, 77

Hjorth, 36

int, 37, 69
int2, 39, 69
Inverse Gaussian, 40
iprofile, 41, 48, 49, 69

Laplace, 42
Levy, 43
lin.diff.eqn, 44, 69
lvna, 15, 45, 59, 61, 62, 65, 67, 69, 75, 77

mexp, 47, 69
model, 19, 24
model (FormulaMethods), 26
mpower, 48
mprofile, 41, 48, 69
mu1.0o1c (pkpd), 53
mu1.1o1c (pkpd), 53
mu1.1o2c (pkpd), 53
mu1.1o2cc (pkpd), 53
mu1.1o2cl (pkpd), 53
mu2.0o1c (pkpd), 53
mu2.0o1cfp (pkpd), 53
mu2.0o2c1 (pkpd), 53
mu2.0o2c1fp (pkpd), 53
mu2.0o2c2 (pkpd), 53
mu2.0o2c2fp (pkpd), 53
mu2.1o1c (pkpd), 53
mu2.1o1cfp (pkpd), 53
Multiplicative Binomial, 50
MultPoisson, 51

names, 14, 45, 46, 59, 65–67, 69, 74–77
names (DataMethods), 9
nesting, 14, 45, 46, 59, 62, 65–67, 69
nesting (DataMethods), 9
nobs, 14, 45, 46, 59, 62, 65–67, 69
nobs (DataMethods), 9

parameters, 19, 24
parameters (FormulaMethods), 26
Pareto, 52
pbetabinom, 69

pbetabinom (Beta Binomial), 3
pboxcox, 69
pboxcox (Box-Cox), 4
pburr, 69
pburr (Burr), 6
pconsul (Consul), 7
pdoublebinom, 69
pdoublebinom (Double Binomial), 16
pdoublepois, 69
pdoublepois (DoublePoisson), 17
pgammacount, 69
pgammacount (Gamma Count), 28
pgextval, 69
pgextval (Generalized Extreme Value), 29
pggamma, 69
pggamma (Generalized Gamma), 30
pginvgauss, 69
pginvgauss (Generalized Inverse

Gaussian), 31
pglogis, 69
pglogis (Generalized Logistic), 33
pgweibull, 69
pgweibull (Generalized Weibull), 34
phjorth, 69
phjorth (Hjorth), 36
pinvgauss, 69
pinvgauss (Inverse Gaussian), 40
pkpd, 53, 69
plaplace, 69
plaplace (Laplace), 42
plevy, 69
plevy (Levy), 43
plot.iprofile, 55
plot.iprofile (iprofile), 41
plot.mprofile, 55
plot.mprofile (mprofile), 48
plot.repeated (DataMethods), 9
plot.residuals, 41, 49, 55, 69
plot.response (DataMethods), 9
pmultbinom, 70
pmultbinom (Multiplicative Binomial), 50
pmultpois, 70
pmultpois (MultPoisson), 51
PowerExponential, 56
ppareto, 70
ppareto (Pareto), 52
ppowexp, 70
ppowexp (PowerExponential), 56

INDEX 83

ppvfpois, 70
ppvfpois (PvfPoisson), 57
print.fmobj (DataMethods), 9
print.formulafn (FormulaMethods), 26
print.gnlm (DataMethods), 9
print.repeated (DataMethods), 9
print.response (DataMethods), 9
print.tccov (DataMethods), 9
print.tvcov (DataMethods), 9
psimplex, 70
psimplex (Simplex), 72
pskewlaplace, 70
pskewlaplace (SkewLaplace), 73
ptwosidedpower (Two-Sided Power), 77
PvfPoisson, 57

qbetabinom, 70
qbetabinom (Beta Binomial), 3
qboxcox, 70
qboxcox (Box-Cox), 4
qburr, 70
qburr (Burr), 6
qconsul (Consul), 7
qdoublebinom, 70
qdoublebinom (Double Binomial), 16
qdoublepois, 70
qdoublepois (DoublePoisson), 17
qgammacount, 70
qgammacount (Gamma Count), 28
qgextval, 70
qgextval (Generalized Extreme Value), 29
qggamma, 70
qggamma (Generalized Gamma), 30
qginvgauss, 70
qginvgauss (Generalized Inverse

Gaussian), 31
qglogis, 70
qglogis (Generalized Logistic), 33
qgweibull, 70
qgweibull (Generalized Weibull), 34
qhjorth, 70
qhjorth (Hjorth), 36
qinvgauss, 70
qinvgauss (Inverse Gaussian), 40
qlaplace, 70
qlaplace (Laplace), 42
qlevy, 70
qlevy (Levy), 43
qmultbinom, 70

qmultbinom (Multiplicative Binomial), 50
qmultpois, 70
qmultpois (MultPoisson), 51
qpareto, 70
qpareto (Pareto), 52
qpowexp, 70
qpowexp (PowerExponential), 56
qpvfpois, 70
qpvfpois (PvfPoisson), 57
qsimplex, 70
qsimplex (Simplex), 72
qskewlaplace, 70
qskewlaplace (SkewLaplace), 73
qtwosidedpower (Two-Sided Power), 77

rbetabinom, 70
rbetabinom (Beta Binomial), 3
rboxcox, 70
rboxcox (Box-Cox), 4
rburr, 70
rburr (Burr), 6
rconsul (Consul), 7
rdoublebinom, 70
rdoublebinom (Double Binomial), 16
rdoublepois, 70
rdoublepois (DoublePoisson), 17
read.list, 15, 36, 46, 58, 61, 62, 65, 67, 70
read.rep, 15, 59, 59, 62, 70
read.surv, 46, 59, 61, 65, 67, 70
response, 14, 45, 46, 59, 62, 65–67, 71
response (DataMethods), 9
resptype, 46, 65, 67
resptype (DataMethods), 9
restovec, 12, 15, 35, 36, 45, 46, 59, 61, 62,

62, 66, 67, 71, 75, 77
rgammacount, 71
rgammacount (Gamma Count), 28
rgextval, 71
rgextval (Generalized Extreme Value), 29
rggamma, 71
rggamma (Generalized Gamma), 30
rginvgauss, 71
rginvgauss (Generalized Inverse

Gaussian), 31
rglogis, 71
rglogis (Generalized Logistic), 33
rgweibull, 71
rgweibull (Generalized Weibull), 34
rhjorth, 71

84 INDEX

rhjorth (Hjorth), 36
rinvgauss, 71
rinvgauss (Inverse Gaussian), 40
rlaplace, 71
rlaplace (Laplace), 42
rlevy, 71
rlevy (Levy), 43
rmna, 12, 15, 46, 59, 61, 62, 65, 66, 71, 75, 77
rmultbinom, 71
rmultbinom (Multiplicative Binomial), 50
rmultpois, 71
rmultpois (MultPoisson), 51
rmutil, 68
rpareto, 71
rpareto (Pareto), 52
rpowexp, 71
rpowexp (PowerExponential), 56
rpvfpois, 71
rpvfpois (PvfPoisson), 57
rsimplex, 71
rsimplex (Simplex), 72
rskewlaplace, 71
rskewlaplace (SkewLaplace), 73
rtwosidedpower (Two-Sided Power), 77
runge.kutta, 71, 71

Simplex, 72
SkewLaplace, 73

tcctomat, 12, 15, 45, 46, 61, 65–67, 71, 74, 77
times, 14, 45, 46, 59, 62, 65–67, 71
times (DataMethods), 9
transform, 46, 62, 65, 67, 71, 74–77
transform (DataMethods), 9
tvctomat, 12, 15, 36, 45, 46, 59, 61, 65–67,

71, 75, 76
Two-Sided Power, 77

units, 46, 65, 67, 75, 77
units (DataMethods), 9

vcov.gnlm (DataMethods), 9

weights, 14, 45, 46, 59, 62, 65–67
weights (DataMethods), 9
wr, 71, 79

	Beta Binomial
	Box-Cox
	Burr
	capply
	Consul
	contrast
	DataMethods
	dftorep
	Double Binomial
	DoublePoisson
	finterp
	fmobj
	fnenvir
	FormulaMethods
	Gamma Count
	gauss.hermite
	Generalized Extreme Value
	Generalized Gamma
	Generalized Inverse Gaussian
	Generalized Logistic
	Generalized Weibull
	gettvc
	Hjorth
	int
	int2
	Inverse Gaussian
	iprofile
	Laplace
	Levy
	lin.diff.eqn
	lvna
	mexp
	mpower
	mprofile
	Multiplicative Binomial
	MultPoisson
	Pareto
	pkpd
	plot.residuals
	PowerExponential
	PvfPoisson
	read.list
	read.rep
	read.surv
	restovec
	rmna
	rmutil
	runge.kutta
	Simplex
	SkewLaplace
	tcctomat
	tvctomat
	Two-Sided Power
	wr
	Index

